This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335279 #7 Jun 04 2020 06:40:04 %S A335279 0,1,3,5,11,15,23,27,37,47,55,107,111,119,155,215,223,239,411,431,471, %T A335279 479,495,549,631,943,951,959,991,1647,1887,1967,1983,2015,2543,2935, %U A335279 3703,3807,3935,3967,4031,6639,6895,7407,7871,7903,8063,8127,10207,13279 %N A335279 Positions of first appearances in A124771 = number of distinct contiguous subsequences of compositions in standard order. %e A335279 The sequence together with the corresponding compositions begins: %e A335279 0: () 215: (1,2,2,1,1,1) %e A335279 1: (1) 223: (1,2,1,1,1,1,1) %e A335279 3: (1,1) 239: (1,1,2,1,1,1,1) %e A335279 5: (2,1) 411: (1,3,1,2,1,1) %e A335279 11: (2,1,1) 431: (1,2,2,1,1,1,1) %e A335279 15: (1,1,1,1) 471: (1,1,2,2,1,1,1) %e A335279 23: (2,1,1,1) 479: (1,1,2,1,1,1,1,1) %e A335279 27: (1,2,1,1) 495: (1,1,1,2,1,1,1,1) %e A335279 37: (3,2,1) 549: (4,3,2,1) %e A335279 47: (2,1,1,1,1) 631: (3,1,1,2,1,1,1) %e A335279 55: (1,2,1,1,1) 943: (1,1,2,2,1,1,1,1) %e A335279 107: (1,2,2,1,1) 951: (1,1,2,1,2,1,1,1) %e A335279 111: (1,2,1,1,1,1) 959: (1,1,2,1,1,1,1,1,1) %e A335279 119: (1,1,2,1,1,1) 991: (1,1,1,2,1,1,1,1,1) %e A335279 155: (3,1,2,1,1) 1647: (1,3,1,2,1,1,1,1) %e A335279 The subsequences for n = 0, 1, 3, 5, 11, 15, 23, 27 are the following (0 = empty partition): %e A335279 0 0 0 0 0 0 0 0 0 0 %e A335279 1 1 1 1 1 1 1 1 1 %e A335279 11 2 2 11 2 2 2 2 %e A335279 21 11 111 11 11 3 11 %e A335279 21 1111 21 12 21 21 %e A335279 211 111 21 32 111 %e A335279 211 121 321 211 %e A335279 2111 211 1111 %e A335279 1211 2111 %e A335279 21111 %t A335279 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A335279 seq=Table[Length[Union[ReplaceList[stc[n],{___,s___,___}:>{s}]]],{n,0,1000}]; %t A335279 Table[Position[seq,i][[1,1]]-1,{i,First/@Gather[seq]}] %Y A335279 Positions of first appearances in A124771. %Y A335279 Compositions where every subinterval has a different sum are A333222. %Y A335279 Knapsack compositions are A333223. %Y A335279 Cf. A000120, A003022, A029931, A066099, A070939, A124767, A124770, A325770, A334299, A334968. %K A335279 nonn %O A335279 1,3 %A A335279 _Gus Wiseman_, Jun 03 2020