cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335291 Numbers m such that the delta(m) = abs(h(m+1) - h(m)) is smaller than delta(k) for all k < m, where h(m) is the harmonic mean of the divisors of m.

Original entry on oeis.org

1, 2, 4, 91, 272, 20118, 20712, 33998, 42818, 61695, 25274946, 27194929, 34883654, 40406622, 43176318, 47350866, 52680050, 149736013, 154957034, 162929406, 171560153, 187012577, 208015843, 267361097, 300087726, 325189758, 355153181, 443360633, 584803578, 605883413
Offset: 1

Views

Author

Amiram Eldar, May 30 2020

Keywords

Comments

Apparently, most of the terms m have h(m+1) > h(m) and numerator(delta(m)) = 1.
Can two consecutive numbers have the same harmonic mean of divisors? If yes, then this sequence is finite.

Examples

			The values of delta(k) for the first terms are 0.333..., 0.166..., 0.047..., 0.0357..., ...
		

Crossrefs

Programs

  • Mathematica
    h[n_] := n * DivisorSigma[0, n]/DivisorSigma[1, n]; dm = 1; h1 = h[1]; s = {}; Do[h2 = h[n]; d = Abs[h2 - h1]; If[d < dm, dm = d; AppendTo[s, n-1]]; h1 = h2, {n, 2, 10^5}]; s