This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335310 #12 Jun 01 2020 06:09:49 %S A335310 1,1,-2,11,-74,477,-804,-84425,3315334,-102211207,3005297956, %T A335310 -88338323709,2627003399164,-78764141488043,2341929797646648, %U A335310 -66394419743289105,1609460569459689286,-18001777147777896975,-1625299659961386724524,196005371138608184827003 %N A335310 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * (-n)^(n-k). %H A335310 Seiichi Manyama, <a href="/A335310/b335310.txt">Table of n, a(n) for n = 0..386</a> %F A335310 a(n) = central coefficient of (1 - (n - 2)*x - (n - 1)*x^2)^n. %F A335310 a(n) = [x^n] 1 / sqrt(1 + 2*(n - 2)*x + n^2*x^2). %F A335310 a(n) = n! * [x^n] exp((2 - n)*x) * BesselI(0,2*sqrt(1 - n)*x). %F A335310 a(n) = Sum_{k=0..n} binomial(n,k)^2 * (1-n)^k. %t A335310 Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] (-n)^(n - k), {k, 0, n}], {n, 1, 19}]] %t A335310 Table[SeriesCoefficient[1/Sqrt[1 + 2 (n - 2) x + n^2 x^2], {x, 0, n}], {n, 0, 19}] %t A335310 Table[n! SeriesCoefficient[Exp[(2 - n) x] BesselI[0, 2 Sqrt[1 - n] x], {x, 0, n}], {n, 0, 19}] %t A335310 Table[Hypergeometric2F1[-n, -n, 1, 1 - n], {n, 0, 19}] %o A335310 (PARI) a(n) = sum(k=0, n, binomial(n,k)^2*(1-n)^k); \\ _Michel Marcus_, Jun 01 2020 %Y A335310 Cf. A098332, A116091, A126869, A307884, A307885, A331657, A335309. %K A335310 sign %O A335310 0,3 %A A335310 _Ilya Gutkovskiy_, May 31 2020