This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335311 #19 Jun 01 2020 06:48:58 %S A335311 1,1,2,2,6,12,3,24,72,24,24,4,120,480,180,360,40,120,5,720,3600,1440, %T A335311 4320,360,2160,720,60,240,180,6,5040,30240,12600,50400,3360,30240, %U A335311 20160,630,5040,3780,7560,84,420,840,7 %N A335311 Coefficients of polynomials arising in the series expansion of the multiplicative inverse of an analytic function. Irregular triangle read by rows. %C A335311 The coefficients of Bell-type polynomials where the monomials correspond to integer partitions. The monomials are in graded lexicographic order with variables x[0] > x[1] > ... > x[n]. This means that monomials are compared first by their total degree, with ties broken by lexicographic order. (This is the monomial order of Maple after sorting.) %e A335311 The triangle starts (the refinement is indicated by square brackets): %e A335311 [0] 1; %e A335311 [1] 1; %e A335311 [2] 2, 2; %e A335311 [3] 6, 12, 3; %e A335311 [4] 24, 72, (24, 24), 4; %e A335311 [5] 120, 480, (180, 360), (40, 120), 5; %e A335311 [6] 720, 3600, (1440, 4320), (360, 2160, 720), (60, 240, 180), 6; %e A335311 [7] 5040, 30240, (12600, 50400), (3360, 30240, 20160), (630, 5040, 3780, 7560), (84, 420, 840), 7; %e A335311 [8] 40320, 282240, (120960, 604800), (33600, 403200, 403200), (6720, 80640, 60480, %e A335311 241920, 40320), (1008, 10080, 20160, 20160, 30240), (112, 672, 1680, 1120), 8; %e A335311 The multivariate polynomials start: %e A335311 1 %e A335311 x[0] %e A335311 2*x[0]^2 + 2*x[1] %e A335311 6*x[0]^3 + 12*x[0]*x[1] + 3*x[2] %e A335311 24*x[0]^4 + 72*x[0]^2*x[1] + 24*x[0]*x[2] + 24*x[1]^2 + 4*x[3] %e A335311 120*x[0]^5 + 480*x[0]^3*x[1] + 180*x[0]^2*x[2] + 360*x[0]*x[1]^2 + 40*x[0]*x[3] + 120*x[1]*x[2] + 5*x[4] %p A335311 A335311Triangle := proc(numrows) local ser, p, C, B, P; %p A335311 B(0) := 1; ser := series(1/B(s), s, numrows); %p A335311 C := [seq(expand(simplify(n!*coeff(ser,s,n))), n=0..numrows-1)]: %p A335311 P := subs(seq((D@@n)(B)(0)=n*x[n], n=1..numrows), C): %p A335311 for p in P do print(seq(abs(c), c=coeffs(sort(p)))) od end: %p A335311 A335311Triangle(8); %Y A335311 Cf. A199673 (row reversed refinement), A006153 (row sums), A000041 (length of rows), A182779 (different monomial order). %K A335311 nonn,tabf %O A335311 0,3 %A A335311 _Peter Luschny_, May 31 2020