cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335311 Coefficients of polynomials arising in the series expansion of the multiplicative inverse of an analytic function. Irregular triangle read by rows.

This page as a plain text file.
%I A335311 #19 Jun 01 2020 06:48:58
%S A335311 1,1,2,2,6,12,3,24,72,24,24,4,120,480,180,360,40,120,5,720,3600,1440,
%T A335311 4320,360,2160,720,60,240,180,6,5040,30240,12600,50400,3360,30240,
%U A335311 20160,630,5040,3780,7560,84,420,840,7
%N A335311 Coefficients of polynomials arising in the series expansion of the multiplicative inverse of an analytic function. Irregular triangle read by rows.
%C A335311 The coefficients of Bell-type polynomials where the monomials correspond to integer partitions. The monomials are in graded lexicographic order with variables x[0] > x[1] > ... > x[n]. This means that monomials are compared first by their total degree, with ties broken by lexicographic order. (This is the monomial order of Maple after sorting.)
%e A335311 The triangle starts (the refinement is indicated by square brackets):
%e A335311 [0]    1;
%e A335311 [1]    1;
%e A335311 [2]    2,     2;
%e A335311 [3]    6,    12,     3;
%e A335311 [4]   24,    72,    (24,    24),    4;
%e A335311 [5]  120,   480,   (180,   360),   (40,   120),     5;
%e A335311 [6]  720,  3600,  (1440,  4320),  (360,  2160,   720), (60,  240,  180),    6;
%e A335311 [7] 5040, 30240, (12600, 50400), (3360, 30240, 20160), (630, 5040, 3780, 7560), (84, 420, 840), 7;
%e A335311 [8] 40320, 282240, (120960, 604800), (33600, 403200, 403200), (6720, 80640, 60480,
%e A335311 241920, 40320), (1008, 10080, 20160, 20160, 30240), (112, 672, 1680, 1120), 8;
%e A335311 The multivariate polynomials start:
%e A335311         1
%e A335311         x[0]
%e A335311       2*x[0]^2 +          2*x[1]
%e A335311       6*x[0]^3 +    12*x[0]*x[1] +          3*x[2]
%e A335311      24*x[0]^4 +  72*x[0]^2*x[1] +    24*x[0]*x[2] +       24*x[1]^2 +       4*x[3]
%e A335311     120*x[0]^5 + 480*x[0]^3*x[1] + 180*x[0]^2*x[2] + 360*x[0]*x[1]^2 + 40*x[0]*x[3] + 120*x[1]*x[2] + 5*x[4]
%p A335311 A335311Triangle := proc(numrows) local ser, p, C, B, P;
%p A335311 B(0) := 1; ser := series(1/B(s), s, numrows);
%p A335311 C := [seq(expand(simplify(n!*coeff(ser,s,n))), n=0..numrows-1)]:
%p A335311 P := subs(seq((D@@n)(B)(0)=n*x[n], n=1..numrows), C):
%p A335311 for p in P do print(seq(abs(c), c=coeffs(sort(p)))) od end:
%p A335311 A335311Triangle(8);
%Y A335311 Cf. A199673 (row reversed refinement), A006153 (row sums),  A000041 (length of rows), A182779 (different monomial order).
%K A335311 nonn,tabf
%O A335311 0,3
%A A335311 _Peter Luschny_, May 31 2020