cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335749 a(n) = n!*[x^n] exp(2*x)*(y*sinh(x*y) + cosh(x*y)) and y = sqrt(6).

Original entry on oeis.org

1, 8, 34, 152, 676, 3008, 13384, 59552, 264976, 1179008, 5245984, 23341952, 103859776, 462123008, 2056211584, 9149092352, 40708792576, 181133355008, 805951005184, 3586070730752, 15956184933376, 70996881195008, 315899894646784, 1405593340977152, 6254173153202176
Offset: 0

Views

Author

Peter Luschny, Jun 24 2020

Keywords

Crossrefs

Cf. A335312.

Programs

  • Maple
    aList := proc(len) local H; H := (x, y) -> exp(2*x)*(y*sinh(x*y) + cosh(x*y)):
    series(H(x, sqrt(6)), x, len + 1): seq(k!*coeff(%, x, k), k=0..len-1) end:
    aList(25);
  • Mathematica
    LinearRecurrence[{4, 2}, {1, 8}, 30] (* Paolo Xausa, Feb 01 2024 *)
  • PARI
    Vec((1 + 4*x) / (1 - 4*x - 2*x^2) + O(x^25)) \\ Colin Barker, Jun 25 2020

Formula

a(n) = A335312(n, 6).
From Colin Barker, Jun 24 2020: (Start)
G.f.: (1 + 4*x) / (1 - 4*x - 2*x^2) for n>1.
a(n) = 4*a(n-1) + 2*a(n-2). (End)
a(n) = 4*A090017(n)+A090017(n+1). - R. J. Mathar, Mar 10 2022

A335537 a(n) = n! [x^n] exp(2*x)*(y*sinh(x*y) + cosh(x*y)) and y = sqrt(x).

Original entry on oeis.org

1, 2, 6, 23, 88, 332, 1294, 5252, 21872, 92888, 402784, 1782288, 8028904, 36768656, 171054160, 807703688, 3867540736, 18765870208, 92212515136, 458609391488, 2307237770496, 11736266317952, 60334416641536, 313342967240960, 1643352523119232, 8700550165605632
Offset: 0

Views

Author

Peter Luschny, Jun 24 2020

Keywords

Crossrefs

Cf. A335312.

Programs

  • Maple
    aList := proc(len) local H; H := (x, y) -> exp(2*x)*(y*sinh(x*y) + cosh(x*y)):
    series(H(x, sqrt(x)), x, len+1): seq(k!*coeff(%, x, k), k=0..len-1) end:
    aList(30);

Formula

a(n) ~ 3^(2*n/3 - 5/6) * exp(32/81 - 8*(2*n/3)^(1/3)/9 + 2*(2*n/3)^(2/3) - n/3) * n^((n+1)/3) / (2^(2*n/3 + 1/6)). - Vaclav Kotesovec, Jun 24 2020
Showing 1-2 of 2 results.