This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335335 #13 Feb 19 2021 09:51:48 %S A335335 1,1,0,1,1,2,0,2,3,3,4,4,0,4,8,11,11,14,16,16,0,16,32,46,57,57,68,76, %T A335335 80,80,0,80,160,236,304,361,361,418,464,496,512,512,0,512,1024,1520, %U A335335 1984,2402,2763,2763,3124,3428,3664,3824,3904,3904,0,3904,7808,11632,15296,18724,21848,24611,24611,27374,29776,31760,33280,34304,34816,34816 %N A335335 Irregular triangle T(n,k) of Arnold numbers with n>=1 and 1<= abs(k) <= n. %H A335335 Heesung Shin and Jiang Zeng, <a href="https://arxiv.org/abs/2006.00507">More bijections for Entringer and Arnold families</a>, arXiv:2006.00507 [math.CO], 2020. %F A335335 T(n,k) is defined by T(1,1) = T(1,-1) = 1, T(n,-n) = 0 (n >= 2), and the recurrence %F A335335 T(n,k) = T(n,k-1) + T(n-1,-k+1) if n >= k > 1, %F A335335 T(n,k) = T(n,-1) if n > k = 1, %F A335335 T(n,k) = T(n,k-1) + T(n-1,-k) if -1 >= k > -n. %e A335335 Triangle begins: %e A335335 1, 1, %e A335335 0, 1, 1, 2, %e A335335 0, 2, 3, 3, 4, 4, %e A335335 0, 4, 8, 11, 11, 14, 16, 16, %e A335335 0, 16, 32, 46, 57, 57, 68, 76, 80, 80, %e A335335 0, 80, 160, 236, 304, 361, 361, 418, 464, 496, 512, 512, %o A335335 (PARI) T(n, k) = {if ((n==1) && (k==1), return (1)); if ((n+k) == 0, if (n==1, return(1), return (0))); if ((n>=k) && (k>1), return(T(n, k-1) + T(n-1, 1-k))); if ((k==1) && (n>k), return(T(n,-1))); if ((-1>=k) && (k>=-n), return(T(n, k-1) + T(n-1, -k)));} %o A335335 tabf(nn) = {for (n=1, nn, for (k=-n, -1, print1(T(n,k), ", ");); for (k=1, n, print1(T(n,k), ", ");); print;);} %Y A335335 Cf. A185356, A202690, A202815, A202816. %Y A335335 Cf. A001586 (row sums). %K A335335 nonn,tabf %O A335335 1,6 %A A335335 _Michel Marcus_, Jun 02 2020