cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335338 P_5(2n+1), the Legendre polynomial of order 5 at 2n+1.

This page as a plain text file.
%I A335338 #25 Feb 16 2025 08:34:00
%S A335338 1,1683,23525,129367,458649,1256651,2904733,5950575,11138417,19439299,
%T A335338 32081301,50579783,76767625,112825467,161311949,225193951,307876833,
%U A335338 413234675,545640517,709996599,911764601,1156995883,1452361725,1805183567,2223463249,2715913251,3291986933
%N A335338 P_5(2n+1), the Legendre polynomial of order 5 at 2n+1.
%H A335338 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>.
%H A335338 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F A335338 a(n) = A160737(2*n+1)/4.
%F A335338 a(n) = 252*n^5 + 630*n^4 + 560*n^3 + 210*n^2 + 30*n + 1 = (2*n + 1) * (126*n^4 + 252*n^3 + 154*n^2 + 28*n + 1).
%F A335338 G.f.: (1+x)*(1+1676*x+11766*x^2+1676*x^3+x^4)/(1-x)^6.
%t A335338 a[n_] := LegendreP[5, 2*n + 1]; Array[a, 27, 0] (* _Amiram Eldar_, May 03 2021 *)
%o A335338 (PARI) a(n) = pollegendre(5, 2*n+1)
%o A335338 (PARI) a(n) = 252*n^5+630*n^4+560*n^3+210*n^2+30*n+1
%o A335338 (PARI) N=40; x='x+O('x^N); Vec((1+x)*(1+1676*x+11766*x^2+1676*x^3+x^4)/(1-x)^6)
%Y A335338 Row 5 of A335333.
%Y A335338 Cf. A160737.
%K A335338 nonn,easy
%O A335338 0,2
%A A335338 _Seiichi Manyama_, Jun 02 2020