This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335341 #27 Nov 02 2023 04:48:32 %S A335341 1,1,1,3,1,1,1,7,4,1,1,3,1,1,1,15,1,4,1,3,1,1,1,7,6,1,13,3,1,1,1,31,1, %T A335341 1,1,12,1,1,1,7,1,1,1,3,4,1,1,15,8,6,1,3,1,13,1,7,1,1,1,3,1,1,4,63,1, %U A335341 1,1,3,1,1,1,28,1,1,6,3,1,1,1 %N A335341 Sum of divisors of A003557(n). %C A335341 The sum of the divisors d of n such that n/d is a coreful divisor of n (a coreful divisor of n is a divisor with the same squarefree kernel as n). The number of these divisors is A005361(n). - _Amiram Eldar_, Jun 30 2023 %H A335341 Antti Karttunen, <a href="/A335341/b335341.txt">Table of n, a(n) for n = 1..16383</a> %H A335341 Antti Karttunen, <a href="/A335341/a335341.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %F A335341 a(n) = A000203(A003557(n)). %F A335341 Multiplicative with a(p^1)=1 and a(p^e) = (p^e-1)/(p-1) if e>1. %F A335341 A057723(n) = A007947(n)*a(n). %F A335341 a(n) = 1 iff n in A005117. %F A335341 a(n) = A336567(n) + A003557(n). - _Antti Karttunen_, Jul 28 2020 %F A335341 Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - _Amiram Eldar_, Sep 09 2023 %F A335341 a(n) = A047994(n)/A173557(n). - _Ridouane Oudra_, Oct 30 2023 %p A335341 A335341 := proc(n) %p A335341 local a,pe,p,e ; %p A335341 a := 1; %p A335341 for pe in ifactors(n)[2] do %p A335341 p := op(1,pe) ; %p A335341 e := op(2,pe) ; %p A335341 if e > 1 then %p A335341 a := a*(p^e-1)/(p-1) ; %p A335341 end if; %p A335341 end do: %p A335341 a ; %p A335341 end proc: %t A335341 f[p_, e_] := (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 26 2020 *) %o A335341 (PARI) a(n) = sigma(n/factorback(factor(n)[, 1])); \\ _Michel Marcus_, Jun 02 2020 %Y A335341 Cf. A000203, A003557, A005361 (number of divisors of A003557), A336567. %Y A335341 Cf. A047994, A173557. %K A335341 nonn,mult,easy %O A335341 1,4 %A A335341 _R. J. Mathar_, Jun 02 2020