cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335353 Irregular table read by rows: Take a square and divide each of its sides into n equal parts giving a total of 4*n nodes, draw straight line segments from node k to node (k+n+1) mod 4*n, 0 <= k < 4*n. Then T(n,k) = number of k-sided polygons in that figure for k >= 3.

This page as a plain text file.
%I A335353 #8 Jun 07 2020 10:26:21
%S A335353 4,16,8,0,0,0,1,32,5,32,40,8,0,0,1,64,28,16,0,0,0,0,0,0,1,80,56,24,8,
%T A335353 0,0,0,0,0,0,0,0,0,1,96,84,24,0,0,0,0,0,0,1,128,100,40,20,0,0,0,0,0,0,
%U A335353 0,0,0,1,144,156,32,0,8,0,0,0,0,0,0,0,0,0,0,0,0,1
%N A335353 Irregular table read by rows: Take a square and divide each of its sides into n equal parts giving a total of 4*n nodes, draw straight line segments from node k to node (k+n+1) mod 4*n, 0 <= k < 4*n. Then T(n,k) = number of k-sided polygons in that figure for k >= 3.
%C A335353 See A335350 for illustrations.
%H A335353 Lars Blomberg, <a href="/A335353/b335353.txt">Table of n, a(n) for n = 1..10000</a>
%e A335353 Table begins:
%e A335353 4;
%e A335353 16, 8, 0, 0, 0, 1;
%e A335353 32, 5;
%e A335353 32, 40, 8, 0, 0, 1;
%e A335353 64, 28, 16, 0, 0, 0, 0, 0, 0, 1;
%e A335353 80, 56, 24, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A335353 96, 84, 24, 0, 0, 0, 0, 0, 0, 1;
%e A335353 128, 100, 40, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A335353 144, 156, 32, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A335353 168, 188, 64, 16, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1;
%e A335353 200, 228, 40, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A335353 248, 252, 88, 24, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%Y A335353 Cf. A335350 (regions), A335351 (edges), A335352 (vertices), A335354 (edges in central polygon), A255011, A335057, A335192.
%K A335353 nonn,tabf
%O A335353 1,1
%A A335353 _Lars Blomberg_, Jun 04 2020