This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335359 #14 Feb 07 2021 09:49:17 %S A335359 0,0,1,0,0,1,2,2,3,2,2,1,0,0,1,0,0,1,2,2,3,4,4,5,6,6,7,6,6,7,8,8,9,8, %T A335359 8,7,6,6,7,6,6,5,4,4,3,2,2,1,0,0,1,0,0,1,2,2,3,2,2,1,0,0,1,0,0,1,2,2, %U A335359 3,4,4,5,6,6,7,6,6,7,8,8,9,10,10,11,12 %N A335359 a(n) is the Y-coordinate of the n-th point of the Koch curve; sequence A335358 gives X-coordinates. %C A335359 Coordinates are given on a hexagonal lattice with X-axis and Y-axis as follows: %C A335359 Y %C A335359 / %C A335359 / %C A335359 0 ---- X %H A335359 Rémy Sigrist, <a href="/A335359/b335359.txt">Table of n, a(n) for n = 0..8192</a> %H A335359 Wikipedia, <a href="https://en.wikipedia.org/wiki/Koch_snowflake">Koch snowflake</a> %H A335359 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A335359 a(n) = 0 iff n belongs to A332206. %e A335359 The Koch curve starts (on a hexagonal lattice) as follows: %e A335359 . . . . . . + . . . . . . %e A335359 /8\ %e A335359 . . . . +---+ +---+ . . . . %e A335359 6\ 7 9 /10 %e A335359 . . . + . + . + . + . . . %e A335359 /2\ /5 \ / \ %e A335359 . +---+ +---+ . . +---+ +---+ . %e A335359 0 1 3 4 12 13 15 16 %e A335359 Hence, a(6) = a(7) = a(9) = a(10) = 2. %o A335359 (PARI) { hex = [1,I,I-1,-1,-I,1-I]; z=0; for (n=0, 84, print1 (imag(z)", "); q=digits(n, 4); d=sum(k=1, #q, if (q[k]==1, +1, q[k]==2, -1, 0)); z+=hex[1+d%#hex]) } %Y A335359 Cf. A065359, A332206, A335358. %K A335359 nonn,base %O A335359 0,7 %A A335359 _Rémy Sigrist_, Jun 03 2020