A335370 Harmonic numbers m with a record number k of distinct prime numbers p_i (i = 1..k) that do not divide m such that m*p_1, m*p_1*p_2, ... , m*p_1*...*p_k are all harmonic numbers.
1, 28, 1638, 6200, 2457000, 4713984, 1381161600, 10200236032
Offset: 1
Examples
28 is the least harmonic number with one prime, p = 5, such that 28*p = 140 is also a harmonic number. 1638 is the least harmonic number with 2 primes, 5 and 29, such that 1638*5 = 8190 and 1638*5*29 = 237510 are also harmonic numbers. . n a(n) k primes p_i, i = 1..k number of permutations ------------------------------------------------------------------------------- 1 1 0 - - 2 28 1 5 1 3 1638 2 5, 29 1 4 6200 3 19, 37, 73 1 5 2457000 4 11, 19, 37, 73 4 6 4713984 6 5, 7, 13, 19, 37, 73 15 5, 7, 19, 37, 73, 1021 5 7 1381161600 7 11, 19, 37, 43, 73, 6277, 12553 10 11, 19, 37, 43, 3181, 6361, 12721 6 8 10200236032 8 3, 5, 79, 157, 313, 1877, 7507, 15013 5
Programs
-
Mathematica
harmNums = Cases[Import["https://oeis.org/A001599/b001599.txt", "Table"], {, }][[;; , 2]]; harMean[n_] := n * DivisorSigma[0, n]/DivisorSigma[1, n]; harmGen[n_] := Module[{d = Divisors[harMean[n]]}, n * Select[2*d - 1, PrimeQ[#] && ! Divisible[n, #] &]]; harmGens[s_] := Union @ Flatten[harmGen /@ s]; lenmax = -1; seq = {}; Do[len = -3 + Length @ FixedPointList[harmGens, {harmNums[[k]]}]; If[len > lenmax, lenmax = len; AppendTo[seq, harmNums[[k]]]], {k, 1, Length[harmNums]}]; seq
Comments