This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335371 #8 Jun 03 2020 23:57:15 %S A335371 1,28,1638,6200,950976,2178540,2457000,4713984,45532800,142990848, %T A335371 459818240,1381161600,10200236032,57575890944,109585986048, %U A335371 513480135168,1553357978368,10881843388416,43947421401888 %N A335371 Harmonic numbers with a record number of harmonic numbers that can be generated from them using an iterative process of multiplying by primes (see Comments). %C A335371 If m is a harmonic number (A001599), then it is possible to generate a new harmonic number m*p if p is a prime number that does not divide m and (p+1)/2 is a divisor of the harmonic mean of the divisors of m, h(m) = m * tau(m)/sigma(m) = m * A000005(m)/A000203(m). %C A335371 Given a harmonic number m, in the first iteration a finite set of new harmonic numbers, {m*p_1, m*p_2, ...} is being generated. In the second iteration, a new set of harmonic number is being generated from each of the harmonic numbers from the previous iteration, a union of these sets is be calculated (removing duplicates). The process is terminated when no more harmonic numbers can be generated. The total number of harmonic numbers from all the iterations is being counted. The terms of this sequence have a record count of new harmonic numbers. %C A335371 The corresponding record values of k are 0, 1, 3, 5, 8, 12, 17, 36, 38, 40, 44, 62, 70, 82, 156, 226, 281, 335, 358, ... %e A335371 1638 is a term since a record number of 3 new harmonic numbers can be generated from it. In the first iteration 2 new harmonic numbers can be generated: 1638 * 5 = 8190, and 1638 * 17 = 27846. In the second iteration, a new harmonic number can be generated from 8190: 8190 * 29 = 237510. %t A335371 harmNums = Cases[Import["https://oeis.org/A001599/b001599.txt", "Table"], {_, _}][[;; , 2]]; harMean[n_] := n * DivisorSigma[0, n]/DivisorSigma[1, n]; harmGen[n_] := Module[{d = Divisors[harMean[n]]}, n * Select[2*d - 1, PrimeQ[#] && ! Divisible[n, #] &]]; harmGens[s_] := Union@Flatten[harmGen /@ s]; lenmax = -1; seq = {}; Do[len = Length @ Union @ Flatten @ FixedPointList[harmGens, {harmNums[[k]]}]; If[len > lenmax, lenmax = len; AppendTo[seq, harmNums[[k]]]], {k, 1, Length[harmNums]}]; seq %Y A335371 Cf. A000005, A000203, A001599, A099377, A099378, A335368, A335369, A335370. %K A335371 nonn,more %O A335371 1,2 %A A335371 _Amiram Eldar_, Jun 03 2020