A335369
Harmonic numbers k such that k*p is not a harmonic number for all the primes p that do not divide k.
Original entry on oeis.org
1, 6, 140, 496, 672, 2970, 27846, 105664, 173600, 237510, 539400, 695520, 726180, 753480, 1421280, 1539720, 2229500, 2290260, 8872200, 11981970, 14303520, 15495480, 33550336, 50401728, 71253000, 80832960, 90409410, 144963000, 221557248, 233103780, 287425800, 318177800
Offset: 1
1 is a term since it is a harmonic number, and there is no prime p such that 1*p = p is a harmonic number (if p is a prime, h(p) = 2*p/(p+1) cannot be an integer).
Cf.
A000005,
A000043,
A000203,
A000396,
A001599,
A099377,
A099378,
A172461,
A335368,
A335370,
A335371.
-
harmNums = Cases[Import["https://oeis.org/A001599/b001599.txt", "Table"], {, }][[;; , 2]]; harMean[n_] := n * DivisorSigma[0, n]/DivisorSigma[1, n]; primeCountQ[n_] := Module[{d = Divisors[harMean[n]]}, Select[2*d - 1, PrimeQ[#] && ! Divisible[n, #] &] == {}]; Select[harmNums, primeCountQ]
A335368
Harmonic numbers k with a record number of primes p not dividing k such that k*p is also a harmonic number.
Original entry on oeis.org
1, 28, 1638, 30240, 2178540, 2457000, 32997888, 142990848, 1307124000, 71271827200, 547929930240, 2198278051200, 2567400675840, 54409216942080
Offset: 1
1 is the first harmonic number, and it has 0 primes p such that 1*p = p is a harmonic number, since a prime number cannot be harmonic. The next harmonic number k with at least one prime p such that k*p is also a harmonic number is 28, since 28 * 5 = 140 is a harmonic number.
-
harmNums = Cases[Import["https://oeis.org/A001599/b001599.txt", "Table"], {, }][[;; , 2]]; harMean[n_] := n*DivisorSigma[0, n]/DivisorSigma[1, n]; primeCount[n_] := Module[{d = Divisors[harMean[n]]}, Length @ Select[2*d - 1, PrimeQ[#] && ! Divisible[n, #] &]]; primeCountMax = -1; seq = {}; Do[If[(pc = primeCount[harmNums[[k]]]) > primeCountMax, primeCountMax = pc; AppendTo[seq, harmNums[[k]]]], {k, 1, Length[harmNums]}]; seq
A335370
Harmonic numbers m with a record number k of distinct prime numbers p_i (i = 1..k) that do not divide m such that m*p_1, m*p_1*p_2, ... , m*p_1*...*p_k are all harmonic numbers.
Original entry on oeis.org
1, 28, 1638, 6200, 2457000, 4713984, 1381161600, 10200236032
Offset: 1
28 is the least harmonic number with one prime, p = 5, such that 28*p = 140 is also a harmonic number.
1638 is the least harmonic number with 2 primes, 5 and 29, such that 1638*5 = 8190 and 1638*5*29 = 237510 are also harmonic numbers.
.
n a(n) k primes p_i, i = 1..k number of permutations
-------------------------------------------------------------------------------
1 1 0 - -
2 28 1 5 1
3 1638 2 5, 29 1
4 6200 3 19, 37, 73 1
5 2457000 4 11, 19, 37, 73 4
6 4713984 6 5, 7, 13, 19, 37, 73 15
5, 7, 19, 37, 73, 1021 5
7 1381161600 7 11, 19, 37, 43, 73, 6277, 12553 10
11, 19, 37, 43, 3181, 6361, 12721 6
8 10200236032 8 3, 5, 79, 157, 313, 1877, 7507, 15013 5
-
harmNums = Cases[Import["https://oeis.org/A001599/b001599.txt", "Table"], {, }][[;; , 2]]; harMean[n_] := n * DivisorSigma[0, n]/DivisorSigma[1, n]; harmGen[n_] := Module[{d = Divisors[harMean[n]]}, n * Select[2*d - 1, PrimeQ[#] && ! Divisible[n, #] &]]; harmGens[s_] := Union @ Flatten[harmGen /@ s]; lenmax = -1; seq = {}; Do[len = -3 + Length @ FixedPointList[harmGens, {harmNums[[k]]}]; If[len > lenmax, lenmax = len; AppendTo[seq, harmNums[[k]]]], {k, 1, Length[harmNums]}]; seq
Showing 1-3 of 3 results.
Comments