This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335373 #8 Jun 05 2020 09:56:42 %S A335373 22,38,44,45,46,54,70,76,77,78,86,88,89,90,91,92,93,94,102,108,109, %T A335373 110,118,134,140,141,142,148,150,152,153,154,155,156,157,158,166,172, %U A335373 173,174,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,198 %N A335373 Numbers k such that the k-th composition in standard order (A066099) is not unimodal. %C A335373 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A335373 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %e A335373 The sequence together with the corresponding compositions begins: %e A335373 22: (2,1,2) %e A335373 38: (3,1,2) %e A335373 44: (2,1,3) %e A335373 45: (2,1,2,1) %e A335373 46: (2,1,1,2) %e A335373 54: (1,2,1,2) %e A335373 70: (4,1,2) %e A335373 76: (3,1,3) %e A335373 77: (3,1,2,1) %e A335373 78: (3,1,1,2) %e A335373 86: (2,2,1,2) %e A335373 88: (2,1,4) %e A335373 89: (2,1,3,1) %e A335373 90: (2,1,2,2) %e A335373 91: (2,1,2,1,1) %e A335373 92: (2,1,1,3) %e A335373 93: (2,1,1,2,1) %e A335373 94: (2,1,1,1,2) %t A335373 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A335373 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A335373 Select[Range[0,200],!unimodQ[stc[#]]&] %Y A335373 The dual version (non-co-unimodal compositions) is A335374. %Y A335373 The case that is not co-unimodal either is A335375. %Y A335373 Unimodal compositions are A001523. %Y A335373 Unimodal normal sequences are A007052. %Y A335373 Unimodal permutations are A011782. %Y A335373 Non-unimodal permutations are A059204. %Y A335373 Non-unimodal compositions are A115981. %Y A335373 Non-unimodal normal sequences are A328509. %Y A335373 Numbers with non-unimodal unsorted prime signature are A332282. %Y A335373 Partitions with non-unimodal 0-appended first differences are A332284. %Y A335373 Non-unimodal permutations of the multiset of prime indices of n are A332671. %Y A335373 Cf. A000120, A029931, A048793, A066099, A070939, A334299. %Y A335373 Cf. A072704, A332281, A332286, A332287, A332639, A332642, A332669, A332672. %K A335373 nonn %O A335373 1,1 %A A335373 _Gus Wiseman_, Jun 03 2020