This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335377 #6 Jun 05 2020 09:57:26 %S A335377 18,50,54,60,75,84,90,98,108,120,126,132,140,147,150,156,162,168,198, %T A335377 204,220,228,234,240,242,245,250,260,264,270,276,280,294,300,306,308, %U A335377 312,315,324,336,338,340,342,348,350,363,364,372,375,378,380,408,414,420 %N A335377 Heinz numbers of non-totally co-strong integer partitions. %C A335377 A sequence is totally co-strong if it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and are themselves a totally co-strong sequence. %C A335377 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A335377 The sequence of terms together with their prime indices begins: %e A335377 18: {1,2,2} 156: {1,1,2,6} 276: {1,1,2,9} %e A335377 50: {1,3,3} 162: {1,2,2,2,2} 280: {1,1,1,3,4} %e A335377 54: {1,2,2,2} 168: {1,1,1,2,4} 294: {1,2,4,4} %e A335377 60: {1,1,2,3} 198: {1,2,2,5} 300: {1,1,2,3,3} %e A335377 75: {2,3,3} 204: {1,1,2,7} 306: {1,2,2,7} %e A335377 84: {1,1,2,4} 220: {1,1,3,5} 308: {1,1,4,5} %e A335377 90: {1,2,2,3} 228: {1,1,2,8} 312: {1,1,1,2,6} %e A335377 98: {1,4,4} 234: {1,2,2,6} 315: {2,2,3,4} %e A335377 108: {1,1,2,2,2} 240: {1,1,1,1,2,3} 324: {1,1,2,2,2,2} %e A335377 120: {1,1,1,2,3} 242: {1,5,5} 336: {1,1,1,1,2,4} %e A335377 126: {1,2,2,4} 245: {3,4,4} 338: {1,6,6} %e A335377 132: {1,1,2,5} 250: {1,3,3,3} 340: {1,1,3,7} %e A335377 140: {1,1,3,4} 260: {1,1,3,6} 342: {1,2,2,8} %e A335377 147: {2,4,4} 264: {1,1,1,2,5} 348: {1,1,2,10} %e A335377 150: {1,2,3,3} 270: {1,2,2,2,3} 350: {1,3,3,4} %e A335377 For example, 60 is the Heinz number of (3,2,1,1), which has run-lengths: (1,1,2) -> (2,1) -> (1,1) -> (2) -> (1). Since (2,1) is not weakly increasing, 60 is in the sequence. %t A335377 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A335377 totcostrQ[q_]:=Or[Length[q]<=1,And[OrderedQ[Length/@Split[q]],totcostrQ[Length/@Split[q]]]]; %t A335377 Select[Range[100],!totcostrQ[Reverse[primeMS[#]]]&] %Y A335377 Partitions with weakly increasing run-lengths are counted by A100883. %Y A335377 Totally strong partitions are counted by A316496. %Y A335377 Heinz numbers of totally strong partitions are A316529. %Y A335377 The version for reversed partitions is A316597. %Y A335377 The strong version is (also) A316597. %Y A335377 The alternating version is A317258. %Y A335377 Totally co-strong partitions are counted by A332275. %Y A335377 The complement is A335376. %Y A335377 Cf. A100882, A181819, A182850, A242031, A305732, A317256, A329747, A332291, A332293, A332339. %K A335377 nonn %O A335377 1,1 %A A335377 _Gus Wiseman_, Jun 05 2020