This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335380 #22 Nov 01 2022 03:13:45 %S A335380 0,1,2,2,3,4,4,5,6,6,7,6,6,7,8,8,9,10,10,11,12,12,9,12,12,13,16,14,15, %T A335380 16,16,17,18,18,19,18,18,19,22,20,21,20,18,19,18,18,19,18,18,19,20,20, %U A335380 21,22,22,23,24,24,25,24,24,25,26,26,27,28,28,29,30,30 %N A335380 a(n) is the X-coordinate of the n-th point of the Kochawave curve; sequence A335381 gives Y-coordinates. %C A335380 Coordinates are given on a hexagonal lattice with X-axis and Y-axis as follows: %C A335380 Y %C A335380 / %C A335380 / %C A335380 0 ---- X %C A335380 The Kochawave curve is a variant of the Koch curve that can be built by successively applying the following substitution to an initial vector (1, 0): %C A335380 .+ C %C A335380 .../ %C A335380 ... / %C A335380 ... / %C A335380 +------>+. +------>+ %C A335380 A B D E %C A335380 - the points A, B, D and E are aligned and equally spaced, %C A335380 - the points D, C and E form an equilateral triangle %C A335380 (for the Koch curve, the points B, C and D form an equilateral triangle). %C A335380 The distance between two consecutive points is related to A160381: %C A335380 - for any n >= 0, let z(n) = a(n) + A335381(n) * exp(i*Pi/3) (where i denotes the imaginary unit), %C A335380 - the square of the distance from z(n) to z(n+1) is 3^A160381(n). %H A335380 Rémy Sigrist, <a href="/A335380/b335380.txt">Table of n, a(n) for n = 0..4096</a> %H A335380 Rémy Sigrist, <a href="https://arxiv.org/abs/2210.17320">The Kochawave curve, a variant of the Koch curve</a>, arXiv:2210.17320 [math.HO], 2022. %H A335380 Rémy Sigrist, <a href="/A335380/a335380_1.png">Representation of the Kochawave curve</a> %H A335380 Rémy Sigrist, <a href="/A335380/a335380.png">Representation of the first iterations of the Kochawave curve</a> %H A335380 Rémy Sigrist, <a href="/A335380/a335380.gp.txt">PARI program for A335380</a> %H A335380 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A335380 a(4^k) = 3^k for any k >= 0. %e A335380 The Kochawave curve starts (on a hexagonal lattice) as follows: %e A335380 . . . . . . + . . . %e A335380 /|6 %e A335380 / | %e A335380 / | %e A335380 . . . . . . | . .+ . . %e A335380 / | .../ 8 %e A335380 / | ... / %e A335380 / | ... / %e A335380 . . . . . . +. + . . %e A335380 / 7 |9 %e A335380 / | %e A335380 / | %e A335380 . . .+ . .+ . +11 | . .+ . %e A335380 .../ 2 ... 5 / \ | .../ 14 %e A335380 ... / ... / \ | ... / %e A335380 ... / ... / \| ... / %e A335380 +-------+. +-------+. . . +-------+. +-------+ %e A335380 0 1 3 4 12 13 10 15 16 %e A335380 - hence a(8) = a(9) = a(11) = a(12) = 6. %o A335380 (PARI) See Links section. %Y A335380 Cf. A160381, A335381. %K A335380 nonn %O A335380 0,3 %A A335380 _Rémy Sigrist_, Jun 04 2020