cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335386 Tri-unitary highly composite numbers: where the number of tri-unitary divisors (A335385) increases to a record.

This page as a plain text file.
%I A335386 #7 Jun 06 2020 03:18:50
%S A335386 1,2,6,24,120,840,7560,83160,1081080,18378360,349188840,8031343320,
%T A335386 200783583000,5822723907000,180504441117000,6678664321329000,
%U A335386 273825237174489000,11774485198503027000,553400804329642269000,27116639412152471181000,1437181888844080972593000
%N A335386 Tri-unitary highly composite numbers: where the number of tri-unitary divisors (A335385) increases to a record.
%H A335386 Amiram Eldar, <a href="/A335386/b335386.txt">Table of n, a(n) for n = 1..32</a>
%F A335386 A335385(a(n)) = 2^(n-1).
%t A335386 f[p_, e_] := If[e == 3 || e == 6, 4, 2]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); dm = 0; s = {}; Do[If[(d1 = d[n]) > dm, dm = d1; AppendTo[s, n]], {n, 1, 1100000}]; s
%Y A335386 Analogous sequences: A002182 (highly composite), A002110 (unitary), A037992 (infinitary), A293185 (bi-unitary), A318278 (exponential), A306736 (exponential infinitary), A307845 (exponential unitary), A309141 (nonunitary), A322484 (semi-unitary).
%Y A335386 Cf. A335385.
%K A335386 nonn
%O A335386 1,2
%A A335386 _Amiram Eldar_, Jun 04 2020