This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335390 #11 Aug 04 2021 10:11:39 %S A335390 1,1,3,15,127,1895,53071,2953575,337064047,79446381319,38491200186831, %T A335390 38046637826801703,76226441027901385519,308075833912652114006087, %U A335390 2503633988838391023366024079,40826169678526460459483237927271,1334110729147927667553970495057395439 %N A335390 a(n) = Sum_{k=0..n} Stirling2(n,k) * 2^binomial(k,2). %C A335390 Stirling transform of A006125. %H A335390 Alois P. Heinz, <a href="/A335390/b335390.txt">Table of n, a(n) for n = 0..82</a> %F A335390 G.f.: Sum_{k>=0} 2^binomial(k,2) * x^k / Product_{j=1..k} (1 - j*x). %F A335390 E.g.f.: Sum_{k>=0} 2^binomial(k,2) * (exp(x) - 1)^k / k!. %F A335390 a(n) ~ 2^(n*(n-1)/2). - _Vaclav Kotesovec_, Jun 05 2020 %p A335390 a:= n-> add(Stirling2(n, k)*2^(k*(k-1)/2), k=0..n): %p A335390 seq(a(n), n=0..19); # _Alois P. Heinz_, Jun 05 2020 %t A335390 Table[Sum[StirlingS2[n, k] 2^Binomial[k, 2], {k, 0, n}], {n, 0, 16}] %o A335390 (PARI) a(n) = sum(k=0, n, stirling(n,k,2) * 2^binomial(k,2)); \\ _Michel Marcus_, Jun 05 2020 %Y A335390 Cf. A006024, A006125. %K A335390 nonn %O A335390 0,3 %A A335390 _Ilya Gutkovskiy_, Jun 04 2020