This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335404 #6 Jun 09 2020 07:23:13 %S A335404 1,2,4,8,10,16,32,37,38,41,44,50,52,64,128,139,141,142,163,171,173, %T A335404 174,177,181,182,184,186,197,198,209,213,214,216,218,226,232,234,256, %U A335404 295,307,313,316,403,409,412,457,460,484,512,535,539,541,542,647,707,737 %N A335404 Numbers k such that the k-th composition in standard order (A066099) has the same product as sum. %C A335404 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A335404 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %F A335404 A124758(a(n)) = A070939(a(n)). %e A335404 The sequence together with the corresponding compositions begins: %e A335404 1: (1) %e A335404 2: (2) %e A335404 4: (3) %e A335404 8: (4) %e A335404 10: (2,2) %e A335404 16: (5) %e A335404 32: (6) %e A335404 37: (3,2,1) %e A335404 38: (3,1,2) %e A335404 41: (2,3,1) %e A335404 44: (2,1,3) %e A335404 50: (1,3,2) %e A335404 52: (1,2,3) %e A335404 64: (7) %e A335404 128: (8) %e A335404 139: (4,2,1,1) %e A335404 141: (4,1,2,1) %e A335404 142: (4,1,1,2) %e A335404 163: (2,4,1,1) %e A335404 171: (2,2,2,1,1) %t A335404 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A335404 Select[Range[0,100],Times@@stc[#]==Plus@@stc[#]&] %Y A335404 The lengths of standard compositions are given by A000120. %Y A335404 Sum of binary indices is A029931. %Y A335404 Sum of prime indices is A056239. %Y A335404 Sum of standard compositions is A070939. %Y A335404 Product of standard compositions is A124758. %Y A335404 Taking GCD instead of product gives A131577. %Y A335404 The version for prime indices is A301987. %Y A335404 The version for prime indices of nonprime numbers is A301988. %Y A335404 These compositions are counted by A335405. %Y A335404 Cf. A001055, A003963, A066099, A096111, A124767, A228351, A233249, A272919, A333219, A333220, A331579. %K A335404 nonn %O A335404 1,2 %A A335404 _Gus Wiseman_, Jun 06 2020