cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335409 a(n) is the least k such that A335155(n) = A335393(k).

This page as a plain text file.
%I A335409 #11 Jun 07 2020 10:40:58
%S A335409 1,3,2,6,7,4,12,14,8,5,28,16,10,13,32,15,20,26,64,30,9,52,128,60,18,
%T A335409 25,256,29,36,50,512,58,17,100,1024,116,34,11,2048,57,68,22,4096,114,
%U A335409 33,44,8192,228,66,21,16384,27,132,42,32768,54,65,84,31,108,130
%N A335409 a(n) is the least k such that A335155(n) = A335393(k).
%C A335409 For any n > 0, the binary representation of a(n) encodes a minimal way (in the sense of the number of operations) of obtaining A335155(n) by starting from 1 and then repeatedly adding 5 or multiplying by 3; the leading 1 corresponds to the starting value 1, and then the 0's correspond to adding 5 and the 1's correspond to multiplying by 3.
%H A335409 Rémy Sigrist, <a href="/A335409/b335409.txt">Table of n, a(n) for n = 1..10000</a>
%H A335409 Rémy Sigrist, <a href="/A335409/a335409.gp.txt">PARI program for A335409</a>
%F A335409 A335155(n) = A335393(a(n)).
%e A335409 The first terms, alongside their binary representation and A335155(n), are:
%e A335409   n   a(n)  bin(a(n))  A335155(n)
%e A335409   --  ----  ---------  ----------
%e A335409    1     1          1   1 = 1
%e A335409    2     3         11   3 = 1*3
%e A335409    3     2         10   6 = 1+5
%e A335409    4     6        110   8 = (1*3)+5
%e A335409    5     7        111   9 = 1*3*3
%e A335409    6     4        100  11 = 1+5+5
%e A335409    7    12       1100  13 = (1*3)+5+5
%e A335409    8    14       1110  14 = (1*3*3)+5
%e A335409    9     8       1000  16 = 1+5+5+5
%e A335409   10     5        101  18 = (1+5)*3
%e A335409   11    28      11100  19 = (1*3*3)+5+5
%e A335409   12    16      10000  21 = 1+5+5+5+5
%o A335409 (PARI) See Links section.
%Y A335409 Cf. A335155, A335365, A335393.
%K A335409 nonn,base
%O A335409 1,2
%A A335409 _Rémy Sigrist_, Jun 06 2020