This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335430 #14 Jul 11 2020 02:49:24 %S A335430 1,2,3,4,6,5,8,7,9,15,16,12,10,17,25,32,14,11,19,29,73,64,24,13,27,37, %T A335430 75,125,128,28,18,30,45,85,145,365,256,31,20,33,50,87,149,375,625,512, %U A335430 48,21,34,51,89,173,425,725,1249,1024,56,22,35,53,95,185,435,745,1489,3125,2048,62,23,38,55,101,219,445,841,1825,3625,6245 %N A335430 Square array where row n lists all numbers k for which A331410(k) = n, read by falling antidiagonals. %C A335430 Array is read by descending antidiagonals with (n,k) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ... where A(n,k) is the (k+1)-th solution x to A331410(x) = n. The row indexing (n) starts from 0, and column indexing (k) also from 0. %C A335430 For any odd prime p that appears on row n, p+1 appears on row n-1. %C A335430 The e-th powers of the terms on row n form a subset of terms on row (e*n). More generally, a product of terms that occur on rows i_1, i_2, ..., i_k can be found at row (i_1 + i_2 + ... + i_k), because A331410 is completely additive. %H A335430 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A335430 The top left corner of the array: %e A335430 n\k | 0 1 2 3 4 5 6 7 8 9 %e A335430 ------+---------------------------------------------------------------- %e A335430 0 | 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... %e A335430 1 | 3, 6, 7, 12, 14, 24, 28, 31, 48, 56, ... %e A335430 2 | 5, 9, 10, 11, 13, 18, 20, 21, 22, 23, ... %e A335430 3 | 15, 17, 19, 27, 30, 33, 34, 35, 38, 39, ... %e A335430 4 | 25, 29, 37, 45, 50, 51, 53, 55, 57, 58, ... %e A335430 5 | 73, 75, 85, 87, 89, 95, 101, 109, 111, 113, ... %e A335430 6 | 125, 145, 149, 173, 185, 219, 225, 250, 255, 261, ... %e A335430 7 | 365, 375, 425, 435, 445, 447, 449, 475, 493, 499, ... %e A335430 8 | 625, 725, 745, 841, 865, 925, 997, 1009, 1073, 1095, ... %e A335430 9 | 1249, 1489, 1825, 1875, 1993, 2017, 2117, 2125, 2175, 2225, ... %e A335430 etc. %o A335430 (PARI) %o A335430 up_to = 78-1; \\ = binomial(12+1,2)-1 %o A335430 memoA331410 = Map(); %o A335430 A331410(n) = if(1==n,0,my(v=0); if(mapisdefined(memoA331410,n,&v), v, my(f=factor(n)); v = sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); mapput(memoA331410,n,v); (v))); %o A335430 memoA335430sq = Map(); %o A335430 A335430sq(n, k) = { my(v=0); if((0==k), v = -1, if(!mapisdefined(memoA335430sq,[n,k-1],&v), v = A335430sq(n, k-1))); for(i=1+v,oo,if(A331410(1+i)==n,mapput(memoA335430sq,[n,k],i); return(1+i))); }; %o A335430 A335430list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0,oo, for(col=0,a, i++; if(i > #v, return(v)); v[i] = A335430sq(col,(a-(col))))); (v); }; %o A335430 v335430 = A335430list(up_to); %o A335430 A335430(n) = v335430[1+n]; %o A335430 for(n=0,up_to,print1(A335430(n),", ")); %Y A335430 Cf. A331410. %Y A335430 Cf. A329662 (the leftmost column), A000079, A335431, A335882 (rows 0, 1 and 2). %Y A335430 Cf. also A334100 (an analogous array for the map k -> k - k/p), and A335910. %K A335430 nonn,tabl %O A335430 0,2 %A A335430 _Antti Karttunen_, Jun 28 2020