This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335434 #6 Jul 04 2020 09:22:49 %S A335434 1,1,1,1,1,2,1,2,1,2,1,4,1,2,2,3,1,4,1,4,2,2,1,6,1,2,2,4,1,5,1,5,2,2, %T A335434 2,8,1,2,2,6,1,5,1,4,4,2,1,10,1,4,2,4,1,6,2,6,2,2,1,11,1,2,4,6,2,5,1, %U A335434 4,2,5,1,15,1,2,4,4,2,5,1,10,3,2,1,11,2 %N A335434 Number of separable factorizations of n into factors > 1. %C A335434 A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. %F A335434 A333487(n) + a(n) = A001055(n). %e A335434 The a(n) factorizations for n = 2, 6, 16, 12, 30, 24, 36, 48, 60: %e A335434 2 6 16 12 30 24 36 48 60 %e A335434 2*3 2*8 2*6 5*6 3*8 4*9 6*8 2*30 %e A335434 2*2*4 3*4 2*15 4*6 2*18 2*24 3*20 %e A335434 2*2*3 3*10 2*12 3*12 3*16 4*15 %e A335434 2*3*5 2*2*6 2*2*9 4*12 5*12 %e A335434 2*3*4 2*3*6 2*3*8 6*10 %e A335434 3*3*4 2*4*6 2*5*6 %e A335434 2*2*3*3 3*4*4 3*4*5 %e A335434 2*2*12 2*2*15 %e A335434 2*2*3*4 2*3*10 %e A335434 2*2*3*5 %t A335434 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A335434 Table[Length[Select[facs[n],Select[Permutations[#],!MatchQ[#,{___,x_,x_,___}]&]!={}&]],{n,100}] %Y A335434 The version for partitions is A325534. %Y A335434 The inseparable version is A333487. %Y A335434 The version for multisets with prescribed multiplicities is A335127. %Y A335434 Factorizations are A001055. %Y A335434 Anti-run compositions are A003242. %Y A335434 Inseparable partitions are A325535. %Y A335434 Anti-runs are ranked by A333489. %Y A335434 Separable partitions are ranked by A335433. %Y A335434 Inseparable partitions are ranked by A335448. %Y A335434 Anti-run permutations of prime indices are A335452. %Y A335434 Cf. A106351, A292884, A295370, A333628, A333755, A335463, A335125, A335126, A335407, A335457, A335474, A335516, A335838. %K A335434 nonn %O A335434 1,6 %A A335434 _Gus Wiseman_, Jul 03 2020