cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335438 Number of partitions of k_n into two distinct parts (s,t) such that k_n | s*t, where k_n = A335437(n).

This page as a plain text file.
%I A335438 #13 Dec 26 2024 10:21:17
%S A335438 1,1,1,2,1,1,2,1,1,3,2,1,1,3,2,2,1,4,1,1,3,1,4,2,1,1,5,2,1,3,1,5,3,2,
%T A335438 1,1,4,6,1,2,1,2,1,3,6,1,4,1,1,2,1,7,1,1,5,4,3,2,2,7,1,1,1,2,1,5,8,3,
%U A335438 1,4,1,1,1,3,8,2,1,1,6,1,3,2,1,1,2,9,5,1,1,2,1,3
%N A335438 Number of partitions of k_n into two distinct parts (s,t) such that k_n | s*t, where k_n = A335437(n).
%C A335438 a(n) >= 1.
%H A335438 Robert Israel, <a href="/A335438/b335438.txt">Table of n, a(n) for n = 1..10000</a>
%H A335438 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A335438 a(n) = floor((A000188(A335437(n))-1)/2). - _Robert Israel_, Dec 23 2024
%e A335438 a(2) = 1; A335437(2) = 16 has exactly one partition into two distinct parts (12,4), such that 16 | 12*4 = 48. Therefore, a(2) = 1.
%p A335438 f:= proc(n) local F,beta,t;
%p A335438      F:= ifactors(n)[2];
%p A335438      beta:= mul(t[1]^floor(t[2]/2),t=F);
%p A335438      if beta <= 2 then NULL else floor((beta-1)/2) fi
%p A335438 end proc:
%p A335438 map(f, [$1..500]); # _Robert Israel_, Dec 23 2024
%t A335438 Table[If[Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}] > 0, Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}], {}], {n, 400}] // Flatten
%Y A335438 Cf. A000188, A013929, A335234, A335437.
%K A335438 nonn
%O A335438 1,4
%A A335438 _Wesley Ivan Hurt_, Jun 10 2020