A335442 List enumerated in lexicographic order of (n, s, k), where for each n >= 1, for each s a subset of 1..n with n-1 elements, and for each k in 0..n-1, we give the value of (Sum_{t subset of s, Card(t)=k} Product_{x in t} x).
1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 1, 5, 6, 1, 6, 11, 6, 1, 7, 14, 8, 1, 8, 19, 12, 1, 9, 26, 24, 1, 10, 35, 50, 24, 1, 11, 41, 61, 30, 1, 12, 49, 78, 40, 1, 13, 59, 107, 60, 1, 14, 71, 154, 120, 1, 15, 85, 225, 274, 120, 1, 16, 95, 260, 324, 144, 1, 17, 107, 307, 396, 180, 1, 18, 121, 372, 508, 240, 1, 19, 137, 461, 702, 360, 1, 20, 155, 580, 1044, 720
Offset: 1
Examples
Table begins: +---+ | 1 | +---+----+ | 1 1 | | 1 2 | +--------+----+ | 1 3 2 | | 1 4 3 | | 1 5 6 | +-------------+----+ | 1 6 11 6 | | 1 7 14 8 | | 1 8 19 12 | | 1 9 26 24 | +------------------+----+ | 1 10 35 50 24 | | 1 11 41 61 30 | | 1 12 49 78 40 | | 1 13 59 107 60 | | 1 14 71 154 120 | +-----------------------+----+ | 1 15 85 225 274 120 | | 1 16 95 260 324 144 | | 1 17 107 307 396 180 | | 1 18 121 372 508 240 | | 1 19 137 461 702 360 | | 1 20 155 580 1044 720 | +----------------------------+----+ | 1 21 175 735 1624 1764 720 | | 1 22 190 820 1849 2038 840 | | 1 23 207 925 2144 2412 1008 | | 1 24 226 1056 2545 2952 1260 | | 1 25 247 1219 3112 3796 1680 | | 1 26 270 1420 3929 5274 2520 | | 1 27 295 1665 5104 8028 5040 | +---------------------------------+----+ etc.
Links
- Luc Rousseau, Program for the computation of A335442 (SWI-Prolog)
Comments