This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335454 #21 Mar 12 2025 17:14:51 %S A335454 1,2,2,3,2,3,3,4,2,3,3,5,3,6,5,5,2,3,3,5,3,5,6,7,3,6,5,9,5,9,7,6,2,3, %T A335454 3,5,3,4,5,7,3,5,4,7,5,10,9,9,3,6,5,9,4,9,10,12,5,9,7,13,7,12,9,7,2,3, %U A335454 3,5,3,4,5,7,3,5,5,7,6,10,9,9,3,5,6,8,5 %N A335454 Number of normal patterns matched by the n-th composition in standard order (A066099). %C A335454 We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1). %C A335454 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A335454 John Tyler Rascoe, <a href="/A335454/b335454.txt">Table of n, a(n) for n = 0..8192</a> %H A335454 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_pattern">Permutation pattern</a> %H A335454 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %H A335454 Gus Wiseman, <a href="https://oeis.org/A102726/a102726.txt">Sequences counting and ranking compositions by the patterns they match or avoid.</a> %e A335454 The a(n) patterns for n = 0, 1, 3, 7, 11, 13, 23, 83, 27, 45: %e A335454 0: 1: 11: 111: 211: 121: 2111: 2311: 1211: 2121: %e A335454 --------------------------------------------------------------------- %e A335454 () () () () () () () () () () %e A335454 (1) (1) (1) (1) (1) (1) (1) (1) (1) %e A335454 (11) (11) (11) (11) (11) (11) (11) (11) %e A335454 (111) (21) (12) (21) (12) (12) (12) %e A335454 (211) (21) (111) (21) (21) (21) %e A335454 (121) (211) (211) (111) (121) %e A335454 (2111) (231) (121) (211) %e A335454 (2311) (211) (212) %e A335454 (1211) (221) %e A335454 (2121) %t A335454 stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]]; %t A335454 mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}]; %t A335454 Table[Length[Union[mstype/@Subsets[stc[n]]]],{n,0,30}] %o A335454 (Python) %o A335454 from itertools import combinations %o A335454 def comp(n): %o A335454 # see A357625 %o A335454 return %o A335454 def A335465(n): %o A335454 A,B,C = set(),set(),comp(n) %o A335454 c = range(len(C)) %o A335454 for j in c: %o A335454 for k in combinations(c, j): %o A335454 A.add(tuple(C[i] for i in k)) %o A335454 for i in A: %o A335454 D = {v: rank + 1 for rank, v in enumerate(sorted(set(i)))} %o A335454 B.add(tuple(D[v] for v in i)) %o A335454 return len(B)+1 # _John Tyler Rascoe_, Mar 12 2025 %Y A335454 References found in the links are not all included here. %Y A335454 Summing over indices with binary length n gives A335456(n). %Y A335454 The contiguous case is A335458. %Y A335454 The version for Heinz numbers of partitions is A335549. %Y A335454 Patterns are counted by A000670 and ranked by A333217. %Y A335454 The n-th composition has A124771(n) distinct consecutive subsequences. %Y A335454 Knapsack compositions are counted by A325676 and ranked by A333223. %Y A335454 The n-th composition has A333257(n) distinct subsequence-sums. %Y A335454 The n-th composition has A334299(n) distinct subsequences. %Y A335454 Minimal avoided patterns are counted by A335465. %Y A335454 Cf. A034691, A056986, A108917, A124767, A124770, A158005, A269134, A333218, A333222, A333224, A334030. %K A335454 nonn,look %O A335454 0,2 %A A335454 _Gus Wiseman_, Jun 14 2020