This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335461 #9 Dec 31 2020 17:02:00 %S A335461 1,0,1,0,1,2,0,1,4,8,0,1,6,24,44,0,1,8,48,176,308,0,1,10,80,440,1540, %T A335461 2612,0,1,12,120,880,4620,15672,25988,0,1,14,168,1540,10780,54852, %U A335461 181916,296564,0,1,16,224,2464,21560,146272,727664,2372512,3816548 %N A335461 Triangle read by rows where T(n,k) is the number of patterns of length n with k runs. %C A335461 We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. %H A335461 Andrew Howroyd, <a href="/A335461/b335461.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %F A335461 T(n,k) = A005649(k-1) * binomial(n-1,k-1) for k > 0. - _Andrew Howroyd_, Dec 31 2020 %e A335461 Triangle begins: %e A335461 1 %e A335461 0 1 %e A335461 0 1 2 %e A335461 0 1 4 8 %e A335461 0 1 6 24 44 %e A335461 0 1 8 48 176 308 %e A335461 0 1 10 80 440 1540 2612 %e A335461 0 1 12 120 880 4620 15672 25988 %e A335461 Row n = 3 counts the following patterns: %e A335461 (1,1,1) (1,1,2) (1,2,1) %e A335461 (1,2,2) (1,2,3) %e A335461 (2,1,1) (1,3,2) %e A335461 (2,2,1) (2,1,2) %e A335461 (2,1,3) %e A335461 (2,3,1) %e A335461 (3,1,2) %e A335461 (3,2,1) %t A335461 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A335461 Table[Length[Select[Join@@Permutations/@allnorm[n],Length[Split[#]]==k&]],{n,0,5},{k,0,n}] %o A335461 (PARI) \\ here b(n) is A005649. %o A335461 b(n) = {sum(k=0, n, stirling(n,k,2)*(k + 1)!)} %o A335461 T(n,k)=if(n==0, k==0, b(k-1)*binomial(n-1,k-1)) \\ _Andrew Howroyd_, Dec 31 2020 %Y A335461 Row sums are A000670. %Y A335461 Column n = k is A005649 (anti-run patterns). %Y A335461 Central coefficients are A337564. %Y A335461 The version for compositions is A333755. %Y A335461 Runs of standard compositions are counted by A124767. %Y A335461 Run-lengths of standard compositions are A333769. %Y A335461 Cf. A003242, A052841, A060223, A106351, A106356, A269134, A325535, A333489, A333627, A335838. %K A335461 nonn,tabl %O A335461 0,6 %A A335461 _Gus Wiseman_, Jul 03 2020