cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335461 Triangle read by rows where T(n,k) is the number of patterns of length n with k runs.

This page as a plain text file.
%I A335461 #9 Dec 31 2020 17:02:00
%S A335461 1,0,1,0,1,2,0,1,4,8,0,1,6,24,44,0,1,8,48,176,308,0,1,10,80,440,1540,
%T A335461 2612,0,1,12,120,880,4620,15672,25988,0,1,14,168,1540,10780,54852,
%U A335461 181916,296564,0,1,16,224,2464,21560,146272,727664,2372512,3816548
%N A335461 Triangle read by rows where T(n,k) is the number of patterns of length n with k runs.
%C A335461 We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
%H A335461 Andrew Howroyd, <a href="/A335461/b335461.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%F A335461 T(n,k) = A005649(k-1) * binomial(n-1,k-1) for k > 0. - _Andrew Howroyd_, Dec 31 2020
%e A335461 Triangle begins:
%e A335461      1
%e A335461      0     1
%e A335461      0     1     2
%e A335461      0     1     4     8
%e A335461      0     1     6    24    44
%e A335461      0     1     8    48   176   308
%e A335461      0     1    10    80   440  1540  2612
%e A335461      0     1    12   120   880  4620 15672 25988
%e A335461 Row n = 3 counts the following patterns:
%e A335461   (1,1,1)  (1,1,2)  (1,2,1)
%e A335461            (1,2,2)  (1,2,3)
%e A335461            (2,1,1)  (1,3,2)
%e A335461            (2,2,1)  (2,1,2)
%e A335461                     (2,1,3)
%e A335461                     (2,3,1)
%e A335461                     (3,1,2)
%e A335461                     (3,2,1)
%t A335461 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
%t A335461 Table[Length[Select[Join@@Permutations/@allnorm[n],Length[Split[#]]==k&]],{n,0,5},{k,0,n}]
%o A335461 (PARI) \\ here b(n) is A005649.
%o A335461 b(n) = {sum(k=0, n, stirling(n,k,2)*(k + 1)!)}
%o A335461 T(n,k)=if(n==0, k==0, b(k-1)*binomial(n-1,k-1)) \\ _Andrew Howroyd_, Dec 31 2020
%Y A335461 Row sums are A000670.
%Y A335461 Column n = k is A005649 (anti-run patterns).
%Y A335461 Central coefficients are A337564.
%Y A335461 The version for compositions is A333755.
%Y A335461 Runs of standard compositions are counted by A124767.
%Y A335461 Run-lengths of standard compositions are A333769.
%Y A335461 Cf. A003242, A052841, A060223, A106351, A106356, A269134, A325535, A333489, A333627, A335838.
%K A335461 nonn,tabl
%O A335461 0,6
%A A335461 _Gus Wiseman_, Jul 03 2020