cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335463 Numbers k such that there exists a permutation of the prime indices of k matching both (1,2,1) and (2,1,2).

Original entry on oeis.org

36, 72, 90, 100, 108, 126, 144, 180, 196, 198, 200, 216, 225, 234, 252, 270, 288, 300, 306, 324, 342, 350, 360, 378, 392, 396, 400, 414, 432, 441, 450, 468, 484, 500, 504, 522, 525, 540, 550, 558, 576, 588, 594, 600, 612, 630, 648, 650, 666, 675, 676, 684, 700
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with their prime indices begins:
   36: {1,1,2,2}
   72: {1,1,1,2,2}
   90: {1,2,2,3}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  126: {1,2,2,4}
  144: {1,1,1,1,2,2}
  180: {1,1,2,2,3}
  196: {1,1,4,4}
  198: {1,2,2,5}
  200: {1,1,1,3,3}
  216: {1,1,1,2,2,2}
  225: {2,2,3,3}
  234: {1,2,2,6}
  252: {1,1,2,2,4}
  270: {1,2,2,2,3}
  288: {1,1,1,1,1,2,2}
  300: {1,1,2,3,3}
		

Crossrefs

Replacing "and" with "or" gives A126706.
Positions of nonzero terms in A335462.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
Patterns matched by standard compositions are counted by A335454.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Permutations[primeMS[#]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x_,x_,_,y_,_,x_,_}/;x>y]&]!={}&]