A335463 Numbers k such that there exists a permutation of the prime indices of k matching both (1,2,1) and (2,1,2).
36, 72, 90, 100, 108, 126, 144, 180, 196, 198, 200, 216, 225, 234, 252, 270, 288, 300, 306, 324, 342, 350, 360, 378, 392, 396, 400, 414, 432, 441, 450, 468, 484, 500, 504, 522, 525, 540, 550, 558, 576, 588, 594, 600, 612, 630, 648, 650, 666, 675, 676, 684, 700
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 36: {1,1,2,2} 72: {1,1,1,2,2} 90: {1,2,2,3} 100: {1,1,3,3} 108: {1,1,2,2,2} 126: {1,2,2,4} 144: {1,1,1,1,2,2} 180: {1,1,2,2,3} 196: {1,1,4,4} 198: {1,2,2,5} 200: {1,1,1,3,3} 216: {1,1,1,2,2,2} 225: {2,2,3,3} 234: {1,2,2,6} 252: {1,1,2,2,4} 270: {1,2,2,2,3} 288: {1,1,1,1,1,2,2} 300: {1,1,2,3,3}
Links
- Wikipedia, Permutation pattern
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Comments