A335474 Number of nonempty normal patterns contiguously matched by the n-th composition in standard order.
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 2, 4, 4, 4, 1, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 7, 4, 7, 6, 5, 1, 2, 2, 4, 2, 3, 4, 6, 2, 4, 3, 6, 4, 6, 7, 8, 2, 4, 4, 7, 3, 7, 6, 10, 4, 7, 6, 10, 6, 10, 8, 6, 1, 2, 2, 4, 2, 3, 4, 6, 2, 4, 4, 6, 4, 6, 7, 8, 2, 4, 4, 7, 4, 6
Offset: 0
Keywords
Examples
The a(n) patterns for n = 32, 80, 133, 290, 305, 329, 436 are: (1) (1) (1) (1) (1) (1) (1) (12) (21) (12) (12) (11) (12) (321) (21) (21) (12) (21) (231) (121) (21) (121) (213) (122) (123) (2131) (221) (212) (2331) (1212) (2123) (12123)
Links
Crossrefs
The version for Heinz numbers of partitions is A335516(n) - 1.
The non-contiguous version is A335454(n) - 1.
The version allowing empty patterns is A335458.
The n-th composition has A124771(n) distinct consecutive subsequences.
The n-th composition has A334299(n) distinct subsequences.
Minimal avoided patterns are counted by A335465.
Patterns matched by prime indices are counted by A335549.
Programs
Formula
a(n) = A335458(n) - 1.
Comments