cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335453 Number of (2,1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2020

Keywords

Comments

Depends only on unsorted prime signature (A124010), but not only on sorted prime signature (A118914).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 18, 36, 54, 72, 90, 108, 144, 180:
  (212)  (1212)  (2122)  (11212)  (2123)  (12122)  (111212)  (12123)
         (2112)  (2212)  (12112)  (2132)  (12212)  (112112)  (12132)
         (2121)          (12121)  (2312)  (21122)  (112121)  (12312)
                         (21112)  (3212)  (21212)  (121112)  (13212)
                         (21121)          (21221)  (121121)  (21123)
                         (21211)          (22112)  (121211)  (21132)
                                          (22121)  (211112)  (21213)
                                                   (211121)  (21231)
                                                   (211211)  (21312)
                                                   (212111)  (21321)
                                                             (23112)
                                                             (23121)
                                                             (31212)
                                                             (32112)
                                                             (32121)
		

Crossrefs

References found in the link are not all repeated here.
Positions of ones are A095990.
The avoiding version is A335450.
Replacing (2,1,2) with (1,2,1) gives A335446.
Patterns are counted by A000670.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A333175.
STC-numbers of permutations of prime indices are A333221.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A335448.
Patterns matched by standard compositions are counted by A335454.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Dimensions of downsets of standard compositions are A335465.
(1,2,2)-matching compositions are ranked by A335475.
(2,2,1)-matching compositions are ranked by A335477.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x>y]&]],{n,100}]

Formula

a(n) + A335450(n) = A008480(n).

A335524 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (2,2,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335450.
These compositions are counted by A335473 (by sum).
The complement A335477 is the matching version.
The (1,2,2)-avoiding version is A335525.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,y_,_}/;x>y]&]

A335475 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,2,2).

Original entry on oeis.org

26, 53, 54, 58, 90, 100, 106, 107, 109, 110, 117, 118, 122, 154, 164, 181, 182, 186, 201, 202, 204, 210, 212, 213, 214, 215, 218, 219, 221, 222, 228, 234, 235, 237, 238, 245, 246, 250, 282, 309, 310, 314, 329, 332, 346, 356, 362, 363, 365, 366, 373, 374, 378
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   26: (1,2,2)
   53: (1,2,2,1)
   54: (1,2,1,2)
   58: (1,1,2,2)
   90: (2,1,2,2)
  100: (1,3,3)
  106: (1,2,2,2)
  107: (1,2,2,1,1)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  117: (1,1,2,2,1)
  118: (1,1,2,1,2)
  122: (1,1,1,2,2)
  154: (3,1,2,2)
  164: (2,3,3)
		

Crossrefs

The complement A335525 is the avoiding version.
The (2,2,1)-matching version is A335477.
Patterns matching this pattern are counted by A335509 (by length).
Permutations of prime indices matching this pattern are counted by A335453.
These compositions are counted by A335472 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x
    				
Showing 1-3 of 3 results.