This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335497 #37 Jun 14 2022 11:58:14 %S A335497 1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,1,12,2,3,2,4,2,5,2,6,2,7,2,8, %T A335497 2,9,2,10,2,11,4,3,3,4,4,5,3,5,4,6,3,6,4,7,3,7,4,8,3,8,4,9,3,9,4,10,3, %U A335497 10,4,11,5,5,6,5,7,5,8,5,9,5,10,5,11,6,6 %N A335497 a(1) = 1, and for any n > 0, a(n+1) is the number of times the decimal representation of a(n) appears in the concatenation of the first n terms, possibly with overlap. %C A335497 This sequence is a variant of A276457. %C A335497 This sequence is unbounded. %C A335497 It seems that lim sup a(n)/(n*log(n)) = 0.03 approximately. - _Ya-Ping Lu_, Dec 16 2021 %H A335497 Rémy Sigrist, <a href="/A335497/b335497.txt">Table of n, a(n) for n = 1..10000</a> %H A335497 Rémy Sigrist, <a href="/A335497/a335497.png">Logarithmic scatterplot of the first 1000000 terms</a> %H A335497 Rémy Sigrist, <a href="/A335497/a335497.pl.txt">Perl program for A335497</a> %e A335497 The first terms, alongside their concatenations with a star in front of each occurrence of a(n), are: %e A335497 n a(n) cat(a(1)...a(n)) %e A335497 -- ---- --------------------------------- %e A335497 1 1 *1 %e A335497 2 1 *1*1 %e A335497 3 2 11*2 %e A335497 4 1 *1*12*1 %e A335497 5 3 1121*3 %e A335497 6 1 *1*12*13*1 %e A335497 7 4 112131*4 %e A335497 8 1 *1*12*13*14*1 %e A335497 9 5 11213141*5 %e A335497 ... %e A335497 17 9 1121314151617181*9 %e A335497 18 1 *1*12*13*14*15*16*17*18*19*1 %e A335497 19 10 112131415161718191*10 %e A335497 20 1 *1*12*13*14*15*16*17*18*19*1*10*1 %e A335497 21 12 1*12131415161718191101*12 %e A335497 22 2 11*21314151617181911011*2*2 %o A335497 (Perl) See Links section. %o A335497 (Python) %o A335497 a1 = 1; print(a1, end =', '); S = str(a1) %o A335497 for n in range(2, 100): ct = S.count(str(a1)); S += str(ct); print(ct, end = ', '); a1 = ct # _Ya-Ping Lu_, Dec 16 2021 %Y A335497 Cf. A179801, A276457. %K A335497 nonn,base %O A335497 1,3 %A A335497 _Rémy Sigrist_, Jun 14 2020