This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335505 #21 Jul 13 2020 07:29:43 %S A335505 0,1,1,6,1,1,4,1,1,2,1,1,0,0,0,6,60,6,30,2,1,48,2,3,12,0,1,6,156,14, %T A335505 22,2,18,1,34,78,12,36,3,48,0,1,138,198,10,684,1,1,2,20,1,2,0,22,1872, %U A335505 495,2,50,315,0,1,405,245,2780,0,1440 %N A335505 Triangle read by rows, 0 <= k < n, n >= 1: T(n,k) is the eventual period of the sequence x(j) (or 0 if x(j) never enters a cycle) defined as follows: x(0) = 1 and for j > 1 x(j) is obtained from 5*x(j-1) by deleting all occurrences of the digit k in base n. %C A335505 T(1,0) = 0 is defined in order to make the triangle of numbers regular. %C A335505 T(n,k) = 1 whenever k is a power of 5 and k > 1. %H A335505 Pontus von Brömssen, <a href="/A335505/b335505.txt">Rows n = 1..32, flattened</a> %e A335505 Triangle begins: %e A335505 n\k 0 1 2 3 4 5 6 7 8 9 %e A335505 ----------------------------------------------------- %e A335505 1: 0 %e A335505 2: 1 1 %e A335505 3: 6 1 1 %e A335505 4: 4 1 1 2 %e A335505 5: 1 1 0 0 0 %e A335505 6: 6 60 6 30 2 1 %e A335505 7: 48 2 3 12 0 1 6 %e A335505 8: 156 14 22 2 18 1 34 78 %e A335505 9: 12 36 3 48 0 1 138 198 10 %e A335505 10: 684 1 1 2 20 1 2 0 22 1872 %e A335505 T(10,7) = 0 because A335506 never enters a cycle. %o A335505 (Python) %o A335505 from sympy.ntheory.factor_ import digits %o A335505 from functools import reduce %o A335505 def drop(x,n,k): %o A335505 # Drop all digits k from x in base n. %o A335505 return reduce(lambda x,j:n*x+j if j!=k else x,digits(x, n)[1:],0) %o A335505 def cycle_length(n,k,m): %o A335505 # Brent's algorithm for finding cycle length. %o A335505 # Note: The function may hang if the sequence never enters a cycle. %o A335505 if (m,n,k)==(5,10,7): %o A335505 return 0 # A little cheating; see A335506. %o A335505 p=1 %o A335505 length=0 %o A335505 tortoise=hare=1 %o A335505 nz=0 %o A335505 while True: %o A335505 hare=drop(m*hare,n,k) %o A335505 while hare and hare%n==0: %o A335505 hare//=n %o A335505 nz+=1 # Keep track of the number of trailing zeros. %o A335505 length+=1 %o A335505 if tortoise==hare: %o A335505 break %o A335505 if p==length: %o A335505 tortoise=hare %o A335505 nz=0 %o A335505 p*=2 %o A335505 length=0 %o A335505 return length if not nz else 0 %o A335505 def A335505(n,k): %o A335505 return cycle_length(n,k,5) if n>1 else 0 %Y A335505 Cf. A335502, A335503, A335504, A335506. %Y A335505 Cf. A243846, A306569, A306773. %K A335505 nonn,base,tabl %O A335505 1,4 %A A335505 _Pontus von Brömssen_, Jun 13 2020