cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335507 Index of the least Wendt determinant (A048954) divisible by prime(n).

This page as a plain text file.
%I A335507 #8 Jul 05 2020 09:03:08
%S A335507 3,2,4,3,5,28,8,9,11,7,5,9,20,14,23,13,29,15,11,35,9,13,41,11,32,25,
%T A335507 17,53,27,28,7,13,17,23,37,15,39,27,83,43,89,45,19,32,28,11,21,37,113,
%U A335507 19,29,34,40,25,16,131,67,15,69,35,47,73,17,31,39,79,33,21,173,29,32,179
%N A335507 Index of the least Wendt determinant (A048954) divisible by prime(n).
%C A335507 It has been conjectured by Michael B Rees that there exists for every prime a Wendt determinant divisible by that prime. However the conjecture has been proved for all prime divisors equivalent to -1 (mod 6) - (see Lehmer link below).
%H A335507 Charles Helou, <a href="http://dx.doi.org/10.1090/S0025-5718-97-00870-3">On Wendt's Determinant</a>, Math. Comp., 66 (1997) No. 219, 1341-1346.
%H A335507 Emma Lehmer, <a href="https://doi.org/10.1090/S0002-9904-1935-06210-X">On a Resultant Connected with Fermat's Last Theorem</a>, Bull. Amer. Math. Soc. 41 (1935), 864-867.
%H A335507 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CirculantMatrix.html">Circulant matrix</a>.
%H A335507 Wikipedia, <a href="https://en.wikipedia.org/wiki/Circulant_matrix">Circulant matrix</a>.
%e A335507 a(5) = 5 because Wendt(5) = 3751 = 11^2*131. It is divisible by prime(5) = 11 and Wendt(5) is the least Wendt determinant divisible by 11.
%t A335507 Wendt[n_]:=Module[{x},Resultant[x^n-1,(1+x)^n-1,x]];
%t A335507 findW[n_]:= Module[{m=1},While[!IntegerQ[Wendt[m]/n]||Mod[m,6]==0,m++];m];
%t A335507 Table[findW[Prime[n]],{n,1,100}]
%Y A335507 Cf. A048954.
%K A335507 nonn
%O A335507 1,1
%A A335507 _Frank M Jackson_ and Michael B Rees, Jun 11 2020