This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335507 #8 Jul 05 2020 09:03:08 %S A335507 3,2,4,3,5,28,8,9,11,7,5,9,20,14,23,13,29,15,11,35,9,13,41,11,32,25, %T A335507 17,53,27,28,7,13,17,23,37,15,39,27,83,43,89,45,19,32,28,11,21,37,113, %U A335507 19,29,34,40,25,16,131,67,15,69,35,47,73,17,31,39,79,33,21,173,29,32,179 %N A335507 Index of the least Wendt determinant (A048954) divisible by prime(n). %C A335507 It has been conjectured by Michael B Rees that there exists for every prime a Wendt determinant divisible by that prime. However the conjecture has been proved for all prime divisors equivalent to -1 (mod 6) - (see Lehmer link below). %H A335507 Charles Helou, <a href="http://dx.doi.org/10.1090/S0025-5718-97-00870-3">On Wendt's Determinant</a>, Math. Comp., 66 (1997) No. 219, 1341-1346. %H A335507 Emma Lehmer, <a href="https://doi.org/10.1090/S0002-9904-1935-06210-X">On a Resultant Connected with Fermat's Last Theorem</a>, Bull. Amer. Math. Soc. 41 (1935), 864-867. %H A335507 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CirculantMatrix.html">Circulant matrix</a>. %H A335507 Wikipedia, <a href="https://en.wikipedia.org/wiki/Circulant_matrix">Circulant matrix</a>. %e A335507 a(5) = 5 because Wendt(5) = 3751 = 11^2*131. It is divisible by prime(5) = 11 and Wendt(5) is the least Wendt determinant divisible by 11. %t A335507 Wendt[n_]:=Module[{x},Resultant[x^n-1,(1+x)^n-1,x]]; %t A335507 findW[n_]:= Module[{m=1},While[!IntegerQ[Wendt[m]/n]||Mod[m,6]==0,m++];m]; %t A335507 Table[findW[Prime[n]],{n,1,100}] %Y A335507 Cf. A048954. %K A335507 nonn %O A335507 1,1 %A A335507 _Frank M Jackson_ and Michael B Rees, Jun 11 2020