cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335518 Number of matching pairs of patterns, the first of length n and the second of length k.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 13, 13, 25, 13, 75, 75, 185, 213, 75, 541, 541, 1471, 2719, 2053, 541, 4683, 4683, 13265, 32973, 40367, 22313, 4683, 47293, 47293, 136711, 408265, 713277, 625295, 271609, 47293
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			Triangle begins:
     1
     1     1
     3     3     3
    13    13    25    13
    75    75   185   213    75
   541   541  1471  2719  2053   541
  4683  4683 13265 32973 40367 22313  4683
Row n =2 counts the following pairs:
  ()<=(1,1)  (1)<=(1,1)  (1,1)<=(1,1)
  ()<=(1,2)  (1)<=(1,2)  (1,2)<=(1,2)
  ()<=(2,1)  (1)<=(2,1)  (2,1)<=(2,1)
		

Crossrefs

Columns k = 0 and k = 1 are both A000670.
Row sums are A335517.
Patterns are ranked by A333217.
Patterns matched by a standard composition are counted by A335454.
Patterns contiguously matched by compositions are counted by A335457.
Minimal patterns avoided by a standard composition are counted by A335465.
Patterns matched by prime indices are counted by A335549.

Programs

  • Mathematica
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[Union[mstype/@Subsets[y,{k}]]],{y,Join@@Permutations/@allnorm[n]}],{n,0,5},{k,0,n}]