cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335532 Decimal expansion of the asymptotic value of the second raw moment of the maximal exponent in the prime factorizations of n (A051903).

This page as a plain text file.
%I A335532 #23 Feb 16 2025 08:34:00
%S A335532 4,3,0,1,3,0,2,4,0,0,3,1,3,3,6,6,5,9,9,9,8,0,6,8,9,3,4,0,4,1,8,7,7,5,
%T A335532 7,9,9,2,2,9,8,9,1,2,9,7,6,3,4,7,7,4,3,1,6,4,7,3,8,6,9,9,1,7,2,7,2,4,
%U A335532 8,1,5,9,3,0,3,2,5,0,3,8,7,7,0,0,3,4,1
%N A335532 Decimal expansion of the asymptotic value of the second raw moment of the maximal exponent in the prime factorizations of n (A051903).
%C A335532 Let H(n) = A051903(n) be the maximal exponent in the prime factorizations of n. The asymptotic density of the numbers whose maximal exponent is k is d(k) = 1/zeta(k+1) - 1/z(k). For example, k=1 corresponds to the squarefree numbers (A005117), and k=2 corresponds to the cubefree numbers which are not squarefree (A067259). The asymptotic mean of H is <H> = Sum_{k>=1} k*d(k) = 1 + Sum_{j>=2} (1 - 1/zeta(j)) = 1.705211... which is Niven's constant (A033150). The second raw moment of the distribution of maximal exponents is <H^2> = Sum_{k>=1} k^2*d(k), whose simplified formula in terms of zeta functions is given in the FORMULA section.
%C A335532 The second central moment, or variance, of H is <H^2> - <H>^2 = 4.3013024003... - 1.7052111401...^2 = 1.3935573679... and the standard deviation is sqrt(<H^2> - <H>^2) = 1.1804903082...
%D A335532 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, pp. 112-113.
%H A335532 Ivan Niven, <a href="https://doi.org/10.1090/S0002-9939-1969-0241373-5">Averages of Exponents in Factoring Integers</a>, Proc. Amer. Math. Soc., Vol. 22, No. 2 (1969), pp. 356-360.
%H A335532 D. Suryanarayana and R. Sita Rama Chandra Rao, <a href="https://doi.org/10.1007/BF01223919">On the maximum and minimum exponents in factoring integers</a>, Archiv der Mathematik, Vol. 28, No. 1 (1977), pp. 261-269.
%H A335532 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NivensConstant.html">Niven's Constant</a>.
%H A335532 Wikipedia, <a href="https://en.wikipedia.org/wiki/Niven%27s_constant">Niven's constant</a>.
%F A335532 Equals lim_{n->oo} (1/n) * Sum_{k=1..n} A051903(k)^2.
%F A335532 Equals 1 + Sum_{j>=2} (2*j-1) * (1 - 1/zeta(j)).
%e A335532 4.30130240031336659998068934041877579922989129763477...
%e A335532 For the numbers n=1..2^20, the values of H(n) = A051903(n) are in the range [0..20]. Their mean value is 894015/524288 = 1.705198..., their second raw moment is 140939/32768 = 4.301116..., and their standard deviation is sqrt(383019202687/274877906944) = 1.180430...
%t A335532 RealDigits[1 + Sum[(2*j - 1)*(1 - 1/Zeta[j]), {j, 2, 400}], 10, 100][[1]]
%Y A335532 Cf. A005117, A033150, A051903, A067259, A242977.
%K A335532 nonn,cons
%O A335532 1,1
%A A335532 _Amiram Eldar_, Oct 18 2020