This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335539 #15 Mar 21 2025 04:46:57 %S A335539 1,1,9,1,1350,1,52920,1,1134000,1,11290752,1,74373979680000,1, %T A335539 8006169600,1,12147360825600000,1,56625794240311296000,1, %U A335539 3311787858630451200000,1,451287524451778560000,1,48168123888308960600064000000,1,10738530029998374912000000,1 %N A335539 a(n) = denominator(-4*n^2*zeta(1 - n)*zeta(n)*(1 - 2^(1 - n)) / Pi^n) for n >= 2, a(0) = 1, a(1) = 1. %F A335539 a(n) = denominator(n*Bernoulli(n)*zeta(n)*(4-2^(3-n))/Pi^n) for n >= 2. %e A335539 Rational sequence starts: 0, 1, 1/9, 0, -7/1350, 0, 31/52920, 0, -127/1134000, 0, 365/11290752, ... %p A335539 a := s -> `if`(s = 1 or s = 0, s, -4*s^2*Zeta(1 - s)*Zeta(s)*(1 - 2^(1 - s))/Pi^s): %p A335539 seq(denom(a(s)), s = 0..34); %Y A335539 Cf. A335538 (numerators), A164555/A027642 (Bernoulli numbers). %Y A335539 Cf. A335264, A335265, A327497. %K A335539 nonn,frac %O A335539 0,3 %A A335539 _Peter Luschny_, Jun 13 2020