This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335548 #22 May 21 2021 04:17:02 %S A335548 0,0,0,0,1,4,10,28,68,159,350,770,1642,3468,7218,14870,30463,62044, %T A335548 125818,254302,512690,1031284,2071858,4157214,8334742,16699103, %U A335548 33442208,66947772,133986940,268107104,536404872,1073082978,2146555516,4293665006,8588112822 %N A335548 Number of compositions of n with at least one non-contiguous value. %C A335548 Also the number of compositions of n matching the pattern (1,2,1) or (2,1,2). %F A335548 a(n) = A011782(n) - A274174(n). - _Alois P. Heinz_, Jul 09 2020 %e A335548 The a(4) = 1 through a(6) = 10 compositions: %e A335548 (121) (131) (141) %e A335548 (212) (1131) %e A335548 (1121) (1212) %e A335548 (1211) (1221) %e A335548 (1311) %e A335548 (2112) %e A335548 (2121) %e A335548 (11121) %e A335548 (11211) %e A335548 (12111) %p A335548 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, %p A335548 add(b(n-i*j, i-1, p+`if`(j=0, 0, 1)), j=0..n/i))) %p A335548 end: %p A335548 a:= n-> ceil(2^(n-1))-b(n$2, 0): %p A335548 seq(a(n), n=0..50); # _Alois P. Heinz_, Jul 09 2020 %t A335548 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Split[#]]>Length[Union[#]]&]],{n,0,10}] %t A335548 (* Second program: *) %t A335548 b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i<1, 0, %t A335548 Sum[b[n-i*j, i-1, p + If[j == 0, 0, 1]], {j, 0, n/i}]]]; %t A335548 a[n_] := Ceiling[2^(n-1)] - b[n, n, 0]; %t A335548 a /@ Range[0, 50] (* _Jean-François Alcover_, May 21 2021, after _Alois P. Heinz_ *) %Y A335548 The complement is A274174. %Y A335548 The version for prime indices is A335460. %Y A335548 Anti-run compositions are A003242. %Y A335548 (1,2,1) and (2,1,2)-matching permutations of prime indices are A335462. %Y A335548 (1,2,1)-matching compositions are A335470. %Y A335548 (1,2,1)-avoiding compositions are A335471. %Y A335548 (2,1,2)-matching compositions are A335472. %Y A335548 (2,1,2)-avoiding compositions are A335473. %Y A335548 Cf. A000670, A001339, A011782, A131044, A261983, A333175, A335451, A335460, A335463. %K A335548 nonn %O A335548 0,6 %A A335548 _Gus Wiseman_, Jul 08 2020 %E A335548 More terms from _Alois P. Heinz_, Jul 09 2020