This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335552 #49 Jun 27 2020 05:10:52 %S A335552 1,3,1,3,1,4,1,5,3,4,1,5,3,6,4,3,7,1,5,6,4,3,7,1,5,8,6,4,9,1,5,3,7,8, %T A335552 6,4,9,1,5,3,7,10,8,6,4,11,3,7,1,5,9,10,8,6,4,11,3,7,1,5,9,12,10,8,6, %U A335552 4,9,1,13,5,3,7,11,12,10,8,6,4,9,1,13,5,3,7,11,14,12,10,8,6,4,11,3,15 %N A335552 Triangle T(n,k) read by rows: in the Josephus problem with n initial numbers on a line: eliminate each second and reverse left-right-direction of elimination. T(n,k) is the (n-k+1)st element removed, 1<=k<=n. %H A335552 Georg Fischer, <a href="/A335552/b335552.txt">Table of n, a(n) for n = 1..1000</a> %H A335552 K. Matsumoto, T. Nakamigawa, M. Watanabe, <a href="http://hdl.handle.net/10131/5785">On the switchback vertion of Josephus Problem</a>, Yokohama Math. J. 53 (2007) 83, function f_k(n). %H A335552 <a href="/index/J#nome">Index to sequences related to the Josephus problem</a> %e A335552 The triangle starts %e A335552 1 %e A335552 3 1 %e A335552 3 1 4 %e A335552 1 5 3 4 %e A335552 1 5 3 6 4 %e A335552 3 7 1 5 6 4 %e A335552 3 7 1 5 8 6 4 %e A335552 9 1 5 3 7 8 6 4 %e A335552 9 1 5 3 7 10 8 6 4 %e A335552 11 3 7 1 5 9 10 8 6 4 %e A335552 11 3 7 1 5 9 12 10 8 6 4 %e A335552 9 1 13 5 3 7 11 12 10 8 6 4 %e A335552 9 1 13 5 3 7 11 14 12 10 8 6 4 %e A335552 11 3 15 7 1 5 9 13 14 12 10 8 6 4 %e A335552 11 3 15 7 1 5 9 13 16 14 12 10 8 6 4 %e A335552 1 17 9 13 5 3 7 11 15 16 14 12 10 8 6 4 %e A335552 1 17 9 13 5 3 7 11 15 18 16 14 12 10 8 6 4 %e A335552 3 19 11 15 7 1 5 9 13 17 18 16 14 12 10 8 6 4 %e A335552 3 19 11 15 7 1 5 9 13 17 20 18 16 14 12 10 8 6 4 %p A335552 sigr := proc(n,r) %p A335552 floor(n/2^r) ; %p A335552 end proc: %p A335552 # A063695 %p A335552 f := proc(n) %p A335552 local ndigs,fn,k ; %p A335552 ndigs := convert(n,base,2) ; %p A335552 fn := 0 ; %p A335552 for k from 2 to nops(ndigs) by 2 do %p A335552 fn := fn+op(k,ndigs)*2^(k-1) %p A335552 end do; %p A335552 fn ; %p A335552 end proc: %p A335552 g := proc(t,n) %p A335552 local r; %p A335552 if t =1 then %p A335552 0 ; %p A335552 elif t > 1 then %p A335552 r := ilog2( (n-1)/(t-1) ) ; %p A335552 (-2)^r*(f( sigr(2*n-1,r) )+f( sigr(n-1,r) )-2*t+3) ; %p A335552 end if; %p A335552 end proc: %p A335552 ft := proc(t,n) %p A335552 f(n-1)+1+g(t,n) ; %p A335552 end proc: %p A335552 for n from 1 to 20 do %p A335552 for t from 1 to n-1 do %p A335552 printf("%3d ", ft(t,n)) ; %p A335552 end do: %p A335552 printf("\n") ; %p A335552 end do: %Y A335552 Cf. A090569 (column k=1). %K A335552 nonn,tabl %O A335552 1,2 %A A335552 _R. J. Mathar_, Jun 22 2020