This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335569 #22 Feb 13 2021 14:21:50 %S A335569 0,7,16,19,111,112,118,127,143,178,181,237,261,275,307,339,353,442, %T A335569 469,524,556,596,664,704,705,949,950,956,964,986,1008,1050,1131,1210, %U A335569 1219,1220,1234,1307,1321 %N A335569 a(n) is the maximum height achieved in the Collatz ('3x+1') problem when starting from numbers in the range [2^n, 2^(n+1)). %C A335569 This sequence is strictly increasing since the height of number 2*k is one larger than the height of k; it appears to fit a quadratic with respect to exponent n. Through n=27 the maximum values are achieved by odd starting values and most are unique heights. The non-unique exceptions are: %C A335569 max height start values previous max height %C A335569 a(5) = 112 54, 55 a(4) = 111 %C A335569 a(7) = 127 231, 235 a(6) = 118 %C A335569 a(24)= 705 31466382, 31466383 a(23)= 704 %C A335569 a(26)= 950 127456254, 127456255 a(25)= 949 %C A335569 Since a(5) = a(4) + 1 and a(26) = a(25) + 1, and since probably many additional such pairs exist, maximum heights cannot be used in showing that A280341 is strictly increasing. %e A335569 a(35) = 1220 is the smallest term having 3 start values achieving maximum height: 63389366646, 63389366647, 64375365601. - _Bert Dobbelaere_, Feb 13 2021 %t A335569 collatz[n_] := If[EvenQ[n], n/2, 3n+1] %t A335569 height[n_] := Length[NestWhileList[collatz, n, #!=1&]] - 1 %t A335569 a335569[n_] := Max[Map[height, Range[2^n, 2^(n+1)-1]]] %t A335569 (* sequence data; long computation times for n >= 22 *) %t A335569 Map[a335569, Range[0, 27]] %Y A335569 Cf. A006577, A280341, A339769. %K A335569 nonn,more %O A335569 0,2 %A A335569 _Hartmut F. W. Hoft_, Jan 26 2021 %E A335569 a(28)-a(38) from _Bert Dobbelaere_, Feb 13 2021