This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335576 #23 Sep 27 2024 08:09:25 %S A335576 5,4,6,9,7,5,8,4,5,4,1,1,2,6,3,4,8,0,2,3,8,3,0,1,2,8,7,4,3,0,8,1,4,0, %T A335576 3,7,7,5,1,9,9,6,3,2,4,1,0,0,8,1,9,2,9,5,1,5,3,1,2,7,1,8,7,1,9,1,7,5, %U A335576 1,8,1,1,0,8,5,7,1,5,1,6,6,8,3,3,5,8,4,0,6,3,7,2,3,8,3,5,4,8,2,3 %N A335576 Decimal expansion of Mertens constant C(5,2). %C A335576 First 100 digits from Alessandro Languasco and Alessandro Zaccagnini 2007 p. 4. %H A335576 Alessandro Languasco and Alessandro Zaccagnini, <a href="https://www.dei.unipd.it/~languasco/MCcomput/MCfinalresults.pdf">Computation of the Mertens constants - more than 100 correct digits</a>, (2007), 1-134. %F A335576 A = C(5,1)=1.2252384385390845800576097747492205... see A340839. %F A335576 B = C(5,2)=0.5469758454112634802383012874308140... this constant. %F A335576 C = C(5,3)=0.8059510404482678640573768602784309... see A336798. %F A335576 D = C(5,4)=1.2993645479149779881608400149642659... see A340866. %F A335576 A*B*C*D = 0.70182435445860646228... = (5/4)*exp(-gamma), where gamma is the Euler-Mascheroni constant A001620. %F A335576 B = sqrt(2)*5^(3/4)*sqrt(A340127)*exp(-gamma)/(4*sqrt(A340004)*A^2*C). %F A335576 B = 2*A*D*log((1+sqrt(5))/2)/(C*sqrt(5)*A340794*A340665). %F A335576 B = A*D*log((1+sqrt(5))/2)^2/(C*Pi*A340213^2). %F A335576 From _Vaclav Kotesovec_, Jan 27 2021: (Start) %F A335576 B*C = 5^(1/4) * exp(-gamma/2) * sqrt(log((1+sqrt(5))/2) / (2 * A340665 * A340794)). %F A335576 A*D = 5^(3/4) * exp(-gamma/2) * sqrt(A340665 * A340794 / (8 * log((1+sqrt(5))/2))). %F A335576 (End) %e A335576 0.546975845411263480238301287430814... %Y A335576 Cf. A001620, A336798, A340004, A340127, A340213, A340665, A340794, A340839, A340866. %K A335576 nonn,cons %O A335576 0,1 %A A335576 _Artur Jasinski_, Jan 26 2021