This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335588 #25 Jul 21 2021 10:52:27 %S A335588 1,1,3,13,81,686,7525,102173,1655241,31119382,665254791,15927737772, %T A335588 422179410829,12275253219828,388591800808471,13309116622983421, %U A335588 490515662121994785,19362705183912628838,815258217524407553989,36479395828632610279316,1729012534789121191076601 %N A335588 Number of n-step n-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1. %H A335588 Vaclav Kotesovec, <a href="/A335588/b335588.txt">Table of n, a(n) for n = 0..65</a> (terms 0..55 from Alois P. Heinz) %F A335588 a(n) = A335570(n,n). %F A335588 a(n) == 1 (mod n) for n >= 2. %e A335588 a(2) = 3: [(0,0),(1,1),(2,2)], [(0,0),(1,1),(0,1)], [(0,0),(1,1),(1,0)]. %p A335588 b:= proc(n, l) option remember; `if`(n=0, 1, b(n-1, map(x-> x+1, l))+add( %p A335588 `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..nops(l))) %p A335588 end: %p A335588 a:= n-> b(n, [0$n]): %p A335588 seq(a(n), n=0..23); %t A335588 b[n_, l_] := b[n, l] = If[n == 0, 1, b[n - 1, l + 1] + Sum[If[l[[i]] > 0, b[n - 1, Sort[ReplacePart[l, i -> l[[i]] - 1]]], 0], {i, 1, Length[l]}]]; %t A335588 a[n_] := b[n, Table[0, {n}]]; %t A335588 a /@ Range[0, 23] (* _Jean-François Alcover_, Jan 29 2021, after _Alois P. Heinz_ *) %Y A335588 Main diagonal of A335570. %K A335588 nonn,walk %O A335588 0,3 %A A335588 _Alois P. Heinz_, Jan 26 2021