cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335590 Decimal expansion of the sum of the reciprocals of the squares of the perfect powers > 1.

This page as a plain text file.
%I A335590 #18 Jan 28 2021 21:28:40
%S A335590 1,0,0,4,7,5,3,2,7,2,0,0,0,9,3,7,7,5,8,6,0,1,4,8,9,5,1,6,4,3,6,7,9,5,
%T A335590 0,3,8,9,3,0,2,8,8,3,9,9,2,4,7,2,4,4,8,9,4,5,6,1,9,2,9,4,0,6,1,0,6,3,
%U A335590 5,7,7,3,4,9,4,4,6,9,2,1,7,0,5,0,9,5,8,5,2,0,5,1,2,1,8,1,6,3,9,7,6,2,0,5,7
%N A335590 Decimal expansion of the sum of the reciprocals of the squares of the perfect powers > 1.
%F A335590 Equals Sum_{k>=2} 1/A001597(k)^2.
%F A335590 Equals Sum_{k>=2} mu(k)*(1 - zeta(2*k)). - _Amiram Eldar_, Jan 27 2021
%e A335590 Equals 1/4^2 + 1/8^2 + 1/9^2 + 1/16^2 + 1/25^2 + 1/27^2 + 1/32^2 + 1/36^2 + 1/49^2 + 1/64^2 + 1/81^2 + 1/100^2 + ... = 0.10047532720009377586014895164367950389302883992472...
%t A335590 RealDigits[Sum[MoebiusMu[k]*(1 - Zeta[2*k]), {k, 2, 200}], 10, 105][[1]] (* _Amiram Eldar_, Jan 27 2021 *)
%o A335590 (PARI) suminf(k=2,moebius(k)*(1-zeta(2*k))) \\ _Hugo Pfoertner_, Jan 27 2021
%Y A335590 Cf. A001597, A013661, A085548, A275647, A335086, A335589, A340588.
%K A335590 nonn,cons
%O A335590 0,4
%A A335590 _Jon E. Schoenfield_, Jan 26 2021