A335854 The digital-root sandwiches sequence (see Comments lines for definition).
11, 9, 99, 999, 9999, 9990, 1, 112, 12, 3, 125, 33, 4, 15, 8, 337, 44, 5, 154, 88, 2, 37, 24, 49, 55, 6, 14, 38, 81, 22, 53, 7, 92, 48, 495, 552, 66, 71, 47, 387, 813, 227, 531, 77, 79, 26, 483, 45, 152, 86, 64, 715, 471, 376, 83, 52, 73, 51, 87, 75, 792, 261, 43, 74, 56, 121, 863, 642, 759, 41, 436, 58, 385, 29
Offset: 1
Examples
The first successive sandwiches are: 119, 999, 999, 999, 999, 011, 121, 231, ... The first one (119) is visible between a(1) = 11 and a(2) = 9; we get the sandwich by inserting the digital root of the sum 1 + 9 = 10 (which is 1) between 1 and 9. The second sandwich (999) is visible between a(2) = 9 and a(3) = 99; we get the sandwich by inserting the digital root of the sum 9 + 9 = 18 (which is 9) between 9 and 9. The third sandwich (999) is visible between a(3) = 99 and a(3) = 999; we get the sandwich by inserting the digital root of the sum 9 + 9 = 18 (which is 9) between 9 and 9. (...) The sixth sandwich (011) is visible between a(6) = 9990 and a(7) = 1; we get the sandwich by inserting the digital root of the sum 0 + 1 = 1 (which is 1) between 0 and 1; etc. The successive sandwiches rebuild, digit after digit, the starting sequence.
Links
- Carole Dubois, Table of n, a(n) for n = 1..428
Comments