A335606 The number of fixed n-ominoes with a convex hull of width 3.
1, 8, 31, 95, 269, 721, 1866, 4728, 11804, 29162, 71502, 174342, 423341, 1024786, 2474934, 5966625, 14365256, 34550674, 83035396, 199440433, 478814076, 1149133511, 2757142136, 6613933242, 15863281135, 38042981575, 91225540813, 218739876078, 524464594304, 1257437814143, 3014693395137
Offset: 3
Examples
a(3)=1 counts 1 3-omino of shape 1x3. a(4)=8 counts 8 4-ominoes of shape 2x3. a(5)=31 counts 6 5-ominoes of shape 2x3 and 25 5-ominoes of shape 3x3. a(6)=95 counts 1 6-omino of shape 2x3, 44 6-ominoes of shape 3x3 and 50 6-ominoes of shape 4x3.
Links
- D. Zeilberger, Series expansion for 2D lattice-animals of globally bounded width
- Index entries for sequences related to polyominoes
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-4,8,1,2,-8,0,-1,9,-2,-1,-3,1).
Programs
-
Mathematica
LinearRecurrence[{5, -6, -4, 8, 1, 2, -8, 0, -1, 9, -2, -1, -3, 1}, {1, 8, 31, 95, 269, 721, 1866, 4728, 11804, 29162, 71502, 174342, 423341, 1024786, 2474934}, 31] (* Georg Fischer, Jan 16 2021 *)
Formula
a(n) = A308359(n,3).
G.f.: -x^3*(1+x) *(x^10 -x^9 -3*x^8 +2*x^7 -x^6 -2*x^5 +7*x^4 -3*x^3 -5*x^2 +2*x +1) / ( (x-1) *(x^3 +x^2 +x -1) *(x^10 -3*x^9 -x^8 +2*x^6 +x^4 -4*x^3 +3*x -1) ).
a(n)= 5*a(n-1) -6*a(n-2) -4*a(n-3) +8*a(n-4) +a(n-5) +2*a(n-6) -8*a(n-7) -a(n-9) +9*a(n-10) -2*a(n-11) -a(n-12) -3*a(n-13) +a(n-14).
Comments