cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335606 The number of fixed n-ominoes with a convex hull of width 3.

Original entry on oeis.org

1, 8, 31, 95, 269, 721, 1866, 4728, 11804, 29162, 71502, 174342, 423341, 1024786, 2474934, 5966625, 14365256, 34550674, 83035396, 199440433, 478814076, 1149133511, 2757142136, 6613933242, 15863281135, 38042981575, 91225540813, 218739876078, 524464594304, 1257437814143, 3014693395137
Offset: 3

Views

Author

R. J. Mathar, Jun 15 2020

Keywords

Comments

Obtained from Zeilberger's tables by subtracting the numbers of width <= 3 and of width <= 2.

Examples

			a(3)=1 counts 1 3-omino of shape 1x3.
a(4)=8 counts 8 4-ominoes of shape 2x3.
a(5)=31 counts 6 5-ominoes of shape 2x3 and 25 5-ominoes of shape 3x3.
a(6)=95 counts 1 6-omino of shape 2x3, 44 6-ominoes of shape 3x3 and 50 6-ominoes of shape 4x3.
		

Crossrefs

Cf. A308359, A027053 (width 2).

Programs

  • Mathematica
    LinearRecurrence[{5, -6, -4, 8, 1, 2, -8, 0, -1, 9, -2, -1, -3, 1}, {1, 8, 31, 95, 269, 721, 1866, 4728, 11804, 29162, 71502, 174342, 423341, 1024786, 2474934}, 31] (* Georg Fischer, Jan 16 2021 *)

Formula

a(n) = A308359(n,3).
G.f.: -x^3*(1+x) *(x^10 -x^9 -3*x^8 +2*x^7 -x^6 -2*x^5 +7*x^4 -3*x^3 -5*x^2 +2*x +1) / ( (x-1) *(x^3 +x^2 +x -1) *(x^10 -3*x^9 -x^8 +2*x^6 +x^4 -4*x^3 +3*x -1) ).
a(n)= 5*a(n-1) -6*a(n-2) -4*a(n-3) +8*a(n-4) +a(n-5) +2*a(n-6) -8*a(n-7) -a(n-9) +9*a(n-10) -2*a(n-11) -a(n-12) -3*a(n-13) +a(n-14).