cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335608 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 2) missing one edge.

This page as a plain text file.
%I A335608 #34 Jun 27 2023 11:10:38
%S A335608 8,104,896,6800,49208,349304,2459696,17261600,120962408,847130504,
%T A335608 5931094496,41521204400,290659059608,2034645303704,14242612785296,
%U A335608 99698576475200,697890896260808,4885238856628904,34196679744812096,239376781458914000,1675637539948086008
%N A335608 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 2) missing one edge.
%C A335608 Number of {0,1} 3 X n matrices with one fixed zero entry and no zero rows or columns.
%C A335608 Number of edge covers of a complete bipartite graph K(3,n) (with n at least 2) missing one edge.
%H A335608 Steven Schlicker, Roman Vasquez, and Rachel Wofford, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Wofford/wofford4.html">Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
%H A335608 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-31,21).
%F A335608 a(n) = 3*7^(n-1) - 5*3^(n-1) + 2.
%F A335608 From _Stefano Spezia_, Jul 04 2020: (Start)
%F A335608 G.f.: x^2*(8 + 16*x)/(1 - 11*x + 31*x^2 - 21*x^3).
%F A335608 a(n) = 11*a(n-1) - 31*a(n-2) + 21*a(n-3) for n > 4. (End)
%e A335608 For n = 2, a(2) = 8.
%t A335608 Array[3*7^(# - 1) - 5*3^(# - 1) + 2 &, 21, 2] (* _Michael De Vlieger_, Jun 22 2020 *)
%Y A335608 Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.
%K A335608 easy,nonn
%O A335608 2,1
%A A335608 _Steven Schlicker_, Jun 15 2020