cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335609 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(4,n) (with n at least 2) complete bipartite graph missing one edge.

This page as a plain text file.
%I A335609 #41 Jun 27 2023 11:10:29
%S A335609 26,896,18458,316928,5049626,77860736,1182865178,17848076288,
%T A335609 268458094106,4032033838976,60516655913498,908002911016448,
%U A335609 13621815273480986,204339630665964416,3065181271854043418,45978326763617681408,689679155263179402266,10345217105634885213056
%N A335609 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(4,n) (with n at least 2) complete bipartite graph missing one edge.
%C A335609 Number of {0,1} 4 X n matrices (with n at least 2) with one fixed zero entry and no zero rows or columns.
%C A335609 Number of edge covers of a K(4,n) complete bipartite graph (with n at least 2) missing one edge.
%H A335609 Colin Barker, <a href="/A335609/b335609.txt">Table of n, a(n) for n = 2..800</a>
%H A335609 Steven Schlicker, Roman Vasquez, and Rachel Wofford, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Wofford/wofford4.html">Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
%H A335609 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (26,-196,486,-315).
%F A335609 a(n) = 7*15^(n-1) - 16*7^(n-1) + 4*3^n - 3.
%F A335609 From _Colin Barker_, Jun 23 2020: (Start)
%F A335609 G.f.: 2*x^2*(13 + 110*x + 129*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)).
%F A335609 a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n>5.
%F A335609 (End)
%e A335609 For n = 3, a(2) = 26.
%t A335609 Array[7*15^(# - 1) - 16*7^(# - 1) + 4*3^# - 3 &, 18, 2] (* _Michael De Vlieger_, Jun 22 2020 *)
%t A335609 LinearRecurrence[{26,-196,486,-315},{26,896,18458,316928},20] (* _Harvey P. Dale_, Aug 21 2021 *)
%o A335609 (PARI) Vec(2*x^2*(13 + 110*x + 129*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)) + O(x^20)) \\ _Colin Barker_, Jun 23 2020
%Y A335609 Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.
%K A335609 easy,nonn
%O A335609 2,1
%A A335609 _Steven Schlicker_, Jun 15 2020