This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335610 #34 Jun 27 2023 11:10:34 %S A335610 80,6800,316928,11784608,397551920,12828154160,405380093408, %T A335610 12683426301248,394943123789840,12269641330477520,380755304897252288, %U A335610 11809363300986469088,366179512530595589360,11352903763691009133680,351960100658771425777568,10911064386177197162304128 %N A335610 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(5,n) (with n at least 2) complete bipartite graph missing one edge. %C A335610 Number of {0,1} 5 X n matrices (with n at least 2) with one fixed zero entry and no zero rows or columns. %C A335610 Number of edge covers of a K(5,n) complete bipartite graph (with n at least 2) missing one edge. %H A335610 Steven Schlicker, Roman Vasquez, and Rachel Wofford, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Wofford/wofford4.html">Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6. %H A335610 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (57,-1002,6562,-15381,9765). %F A335610 a(n) = 15*31^(n-1) - 43*15^(n-1) + 46*7^(n-1) - 22*3^(n-1) + 4. %F A335610 From _Stefano Spezia_, Jul 04 2020: (Start) %F A335610 G.f.: 16*x^2*(5 + 140*x + 593*x^2 + 522*x^3)/(1 - 57*x + 1002*x^2 - 6562*x^3 + 15381*x^4 - 9765*x^5). %F A335610 a(n) = 57*a(n-1) - 1002*a(n-2) + 6562*a(n-3) - 15381*a(n-4) + 9765*a(n-5) for n > 6. (End) %e A335610 For n = 2, a(2) = 80. %t A335610 Array[15*31^(# - 1) - 43*15^(# - 1) + 46*7^(# - 1) - 22*3^(# - 1) + 4 &, 16, 2] (* _Michael De Vlieger_, Jun 22 2020 *) %Y A335610 Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291. %K A335610 easy,nonn %O A335610 2,1 %A A335610 _Steven Schlicker_, Jun 15 2020