This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335611 #32 Jun 27 2023 11:11:25 %S A335611 242,49208,5049626,397551920,27839280002,1845793079528, %T A335611 119216755050026,7602793781214560,481851209165874962, %U A335611 30446042035976733848,1920876815510991751226,121101364739596962016400,7632056827800217741372322,480902390923479550619876168 %N A335611 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 2) missing one edge. %C A335611 The Hausdorff metric defines a distance between sets. Using this distance we can define line segments with sets as endpoints. Create two sets from the vertices of the parts A and B of a complete bipartite graph K(6,n) (with n at least 2) missing one edge so that vertices that are connected by edges are the same Euclidean distance apart. This sequence gives the number of sets at each location on the line segment between A and B. %C A335611 Number of {0,1} 6 X n (with n at least 2) matrices with one fixed zero entry and no zero rows or columns. %C A335611 Take a complete bipartite graph K(6,n) (with n at least 2). This sequence gives the number of edge covers of the graph obtained from this K(6,n) graph after removing one edge. %H A335611 Steven Schlicker, Roman Vasquez, and Rachel Wofford, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Wofford/wofford4.html">Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6. %H A335611 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (120,-4593,69688,-428787,978768,-615195). %F A335611 a(n) = 31*63^(n-1) - 106*31^(n-1) + 145*15^(n-1) - 100*7^(n-1) + 35*3^(n-1) - 5. %F A335611 From _Colin Barker_, Jul 17 2020: (Start) %F A335611 G.f.: 2*x^2*(121 + 10084*x + 128086*x^2 + 372324*x^3 + 270585*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)). %F A335611 a(n) = 120*a(n-1) - 4593*a(n-2) + 69688*a(n-3) - 428787*a(n-4) + 978768*a(n-5) - 615195*a(n-6) for n>7. %F A335611 (End) %p A335611 a:= proc(n) 31*63^(n-1)-106*31^(n-1)+145*15^(n-1) - 100*7^(n-1)+35*3^(n-1)-5 end proc: seq(a(n), n=2..20); %o A335611 (PARI) Vec(2*x^2*(121 + 10084*x + 128086*x^2 + 372324*x^3 + 270585*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)) + O(x^18)) \\ _Colin Barker_, Jul 17 2020 %Y A335611 Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291. %K A335611 easy,nonn %O A335611 2,1 %A A335611 _Steven Schlicker_, Jul 16 2020