cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335617 Let c(1) = c(2) = 0, c(3) = 1, and c(n + 3) = (c(n) - 2*c(n + 1) + c(n + 2))/n, then a(n) = ceiling (c(n)).

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Andres Cicuttin, Oct 11 2020

Keywords

Comments

Conjectured quasiperiodicity with autocorrelation function R(x) = 1/2 if x = 0, 1/4 if x > 0.
Some other proved or conjectured (or suspected) nonperiodic binary sequences where there are no more than two consecutive 0's or 1's include: A083035, A285305, A190843, A286059, A288213, A288551, A288473, A176405, A188321, A188398, A191162, A272170, A197879, A078588, A272532, A273129, A074937, A188297, A289128. Others?

Crossrefs

Programs

  • Mathematica
    c[n_]:=c[n]=(c[n-1]-2c[n-2]+c[n-3])/n;
    c[1] = 0; c[2] = 0; c[3] = 1;
    Table[Ceiling@c[j],{j,1,2^7}]