A335617 Let c(1) = c(2) = 0, c(3) = 1, and c(n + 3) = (c(n) - 2*c(n + 1) + c(n + 2))/n, then a(n) = ceiling (c(n)).
0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
c[n_]:=c[n]=(c[n-1]-2c[n-2]+c[n-3])/n; c[1] = 0; c[2] = 0; c[3] = 1; Table[Ceiling@c[j],{j,1,2^7}]
Comments