This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335626 #37 Apr 01 2021 22:21:43 %S A335626 1,1,4,17,104,661,5584,47837,483584,5332681,63940864,802442057, %T A335626 11548580864,170258934301,2602357970944,44379608478677, %U A335626 800966933970944,14221966162901521,277738909303373824,5823354583392253697,121050262784565837824,2668717158207399650341,62376912442894992277504 %N A335626 Expansion of e.g.f. Product_{k>0} 1/(1-sin(x)^k). %C A335626 a(46) is negative. - _Vaclav Kotesovec_, Oct 03 2020 %H A335626 Seiichi Manyama, <a href="/A335626/b335626.txt">Table of n, a(n) for n = 0..400</a> (terms n = 0..100 from Vaclav Kotesovec) %F A335626 E.g.f.: exp( Sum_{k>0} sigma(k)*sin(x)^k/k ). %t A335626 nmax = 25; CoefficientList[Series[Product[1/(1 - Sin[x]^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Oct 03 2020 *) %o A335626 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/eta(sin(x)))) %o A335626 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, 1-sin(x)^k))) %o A335626 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k)*sin(x)^k/k)))) %Y A335626 Cf. A000041, A335627, A335629. %K A335626 sign %O A335626 0,3 %A A335626 _Seiichi Manyama_, Oct 02 2020