This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335628 #21 Oct 07 2020 11:25:52 %S A335628 1,2,3,6,11,20,37,68,123,232,457,879,1679,3269,6478,12799,25272,50127, %T A335628 99888,198867,396267,791069,1580460,3156095,6305694,12606152,25205005, %U A335628 50388077 %N A335628 Number of regions after generation n of Conant's dissection of a square when dissected with both orthogonal and diagonal lines and where the starting edges rotate clockwise around the square and the dissection halves in size every second generation. %C A335628 This is a variation of A328078 and A334630 where the square is dissected with both orthogonal and diagonal lines. %C A335628 For the first generation, a single orthogonal dissection line is drawn from the bottom to the top edge of the square. For the second generation, a single diagonal line is drawn from the bottom left corner toward to top right corner. The edge where the dissections start now rotates clockwise around the square and the dissection size halves. For the third generation, two orthogonal dissection lines are drawn from the left edge toward the right edge. For the fourth generation, four diagonal lines, two from the left edge and two from the top edge, are drawn from the top-left corner toward the bottom right corner. The edge now rotates clockwise again and the dissection size halves. The sequences gives the number of regions in the resulting dissection after generation n. %C A335628 The author thanks Rémy Sigrist whose code given in A328078 was modified to generate the larger values of this sequence. %H A335628 Scott R. Shannon, <a href="/A335628/a335628.png">Illustration for n=2</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_1.png">Illustration for n=3</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_2.png">Illustration for n=4</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_3.png">Illustration for n=5</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_4.png">Illustration for n=6</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_5.png">Illustration for n=7</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_6.png">Illustration for n=8</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_7.png">Illustration for n=9</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_8.png">Illustration for n=10</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_9.png">Illustration for n=11</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_10.png">Illustration for n=12</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_11.png">Illustration for n=13</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_12.png">Illustration for n=14</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_13.png">Illustration for n=15</a>. %H A335628 Scott R. Shannon, <a href="/A335628/a335628_15.png">Illustration for n=16</a>. %Y A335628 Cf. A328078, A334630, A335703, A337270, A335093, A337675. %K A335628 nonn,more %O A335628 0,2 %A A335628 _Scott R. Shannon_, Oct 02 2020